Suppr超能文献

CT影像组学、放射科医生及临床信息在预测新型冠状病毒肺炎患者预后中的应用

CT Radiomics, Radiologists, and Clinical Information in Predicting Outcome of Patients with COVID-19 Pneumonia.

作者信息

Homayounieh Fatemeh, Ebrahimian Shadi, Babaei Rosa, Mobin Hadi Karimi, Zhang Eric, Bizzo Bernardo Canedo, Mohseni Iman, Digumarthy Subba R, Kalra Mannudeep K

机构信息

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom Ct, Room 248, Boston, MA 02114 (F.H., S.E., E.Z., B.C.B., S.R.D., M.K.K.); and Department of Radiology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran (R.B., H.K.M., I.M.).

出版信息

Radiol Cardiothorac Imaging. 2020 Jul 23;2(4):e200322. doi: 10.1148/ryct.2020200322. eCollection 2020 Aug.

Abstract

PURPOSE

To compare prediction of disease outcome, severity, and patient triage in coronavirus disease 2019 (COVID-19) pneumonia with whole lung radiomics, radiologists' interpretation, and clinical variables.

MATERIALS AND METHODS

This institutional review board-approved retrospective study included 315 adult patients (mean age, 56 years [range, 21-100 years], 190 men, 125 women) with COVID-19 pneumonia who underwent noncontrast chest CT. All patients (inpatients, = 210; outpatients, = 105) were followed-up for at least 2 weeks to record disease outcome. Clinical variables, such as presenting symptoms, laboratory data, peripheral oxygen saturation, and comorbid diseases, were recorded. Two radiologists assessed each CT in consensus and graded the extent of pulmonary involvement (by percentage of involved lobe) and type of opacities within each lobe. Radiomics were obtained for the entire lung, and multiple logistic regression analyses with areas under the curve (AUCs) as outputs were performed.

RESULTS

Most patients (276/315, 88%) recovered from COVID-19 pneumonia; 36/315 patients (11%) died, and 3/315 patients (1%) remained admitted in the hospital. Radiomics differentiated chest CT in outpatient versus inpatient with an AUC of 0.84 ( < .005), while radiologists' interpretations of disease extent and opacity type had an AUC of 0.69 ( < .0001). Whole lung radiomics were superior to the radiologists' interpretation for predicting patient outcome in terms of intensive care unit (ICU) admission (AUC: 0.75 vs 0.68) and death (AUC: 0.81 vs 0.68) ( < .002). The addition of clinical variables to radiomics improved the AUC to 0.84 for predicting ICU admission.

CONCLUSION

Radiomics from noncontrast chest CT were superior to radiologists' assessment of extent and type of pulmonary opacities in predicting COVID-19 pneumonia outcome, disease severity, and patient triage.© RSNA, 2020.

摘要

目的

比较全肺影像组学、放射科医生的解读以及临床变量在预测2019冠状病毒病(COVID-19)肺炎的疾病转归、严重程度和患者分诊方面的效果。

材料与方法

这项经机构审查委员会批准的回顾性研究纳入了315例成年COVID-19肺炎患者(平均年龄56岁[范围21 - 100岁],男性190例,女性125例),这些患者均接受了非增强胸部CT检查。所有患者(住院患者210例;门诊患者105例)均进行了至少2周的随访以记录疾病转归。记录了临床变量,如出现的症状、实验室数据、外周血氧饱和度和合并疾病。两名放射科医生共同对每例CT进行评估,并对肺部受累范围(按受累肺叶的百分比)和每个肺叶内的实变类型进行分级。获取全肺的影像组学数据,并进行以曲线下面积(AUC)为输出的多因素逻辑回归分析。

结果

大多数患者(276/315,88%)从COVID-19肺炎中康复;36/315例患者(11%)死亡,3/315例患者(1%)仍住院治疗。影像组学区分门诊患者与住院患者胸部CT的AUC为0.84(P <.005),而放射科医生对疾病范围和实变类型的解读的AUC为0.69(P <.0001)。在预测患者入住重症监护病房(ICU)(AUC:0.75对0.68)和死亡(AUC:0.81对0.68)方面,全肺影像组学在预测患者转归方面优于放射科医生的解读(P <.002)。将临床变量添加到影像组学中,预测ICU入住的AUC提高到了0.84。

结论

非增强胸部CT的影像组学在预测COVID-19肺炎转归、疾病严重程度和患者分诊方面优于放射科医生对肺部实变范围和类型的评估。©RSNA,2020年

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68a1/7977738/363aca7b43af/ryct.2020200322.fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验