Zhu Lijun, Zhu Lujun, Buhrman Robert A
Cornell University, Ithaca, New York 14850, USA.
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China.
Phys Rev Lett. 2021 Mar 12;126(10):107204. doi: 10.1103/PhysRevLett.126.107204.
Spin backflow and spin-memory loss have been well established to considerably lower the interfacial spin transmissivity of metallic magnetic interfaces and thus the energy efficiency of spin-orbit torque technologies. Here, we report that spin backflow and spin-memory loss at Pt-based heavy metal-ferromagnet interfaces can be effectively eliminated by inserting an insulating paramagnetic NiO layer of optimum thickness. The latter enables the thermal magnon-mediated essentially unity spin-current transmission at room temperature due to considerably enhanced effective spin-mixing conductance of the interface. As a result, we obtain dampinglike spin-orbit torque efficiency per unit current density of up to 0.8 as detected by the standard technology ferromagnet FeCoB and others, which reaches the expected upper-limit spin Hall ratio of Pt. We establish that Pt/NiO and Pt-Hf/NiO are two energy-efficient, integration-friendly, and high-endurance spin-current generators that provide >100 times greater energy efficiency than sputter-deposited topological insulators BiSb and BiSe. Our finding will benefit spin-orbitronic research and advance spin-torque technologies.
自旋回流和自旋记忆损失已被充分证实会显著降低金属磁性界面的界面自旋透射率,从而降低自旋轨道扭矩技术的能量效率。在此,我们报告通过插入具有最佳厚度的绝缘顺磁NiO层,可以有效消除基于Pt的重金属-铁磁体界面处的自旋回流和自旋记忆损失。由于界面的有效自旋混合电导显著增强,后者使得热磁振子介导的室温下基本单位自旋电流传输成为可能。结果,我们通过标准技术铁磁体FeCoB等检测到,每单位电流密度的类阻尼自旋轨道扭矩效率高达0.8,达到了Pt预期的上限自旋霍尔比。我们确定Pt/NiO和Pt-Hf/NiO是两种节能、集成友好且高耐久性的自旋电流发生器,其能量效率比溅射沉积的拓扑绝缘体BiSb和BiSe高100倍以上。我们的发现将有益于自旋电子学研究并推动自旋扭矩技术的发展。