Suppr超能文献

大肠杆菌壳聚糖、壳寡糖和壳二糖代谢的再研究:ChiA、ChbR、ChbF 和 ChbG 作用的重新分配。

Chitin, Chitin Oligosaccharide, and Chitin Disaccharide Metabolism of Escherichia coli Revisited: Reassignment of the Roles of ChiA, ChbR, ChbF, and ChbG.

机构信息

Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany.

出版信息

Microb Physiol. 2021;31(2):178-194. doi: 10.1159/000515178. Epub 2021 Apr 1.

Abstract

Escherichia coli is unable to grow on polymeric and oligomeric chitin, but grows on chitin disaccharide (GlcNAc-GlcNAc; N,N'-diacetylchitobiose) and chitin trisaccharide (GlcNAc-GlcNAc-GlcNAc; N,N',N''-triacetylchitotriose) via expression of the chb operon (chbBCARFG). The phosphotransferase system (PTS) transporter ChbBCA facilitates transport of both saccharides across the inner membrane and their concomitant phosphorylation at the non-reducing end, intracellularly yielding GlcNAc 6-phosphate-GlcNAc (GlcNAc6P-GlcNAc) and GlcNAc6P-GlcNAc-GlcNAc, respectively. We revisited the intracellular catabolism of the PTS products, thereby correcting the reported functions of the 6-phospho-glycosidase ChbF, the monodeacetylase ChbG, and the transcriptional regulator ChbR. Intracellular accumulation of glucosamine 6P-GlcNAc (GlcN6P-GlcNAc) and GlcN6P-GlcNAc-GlcNAc in a chbF mutant unraveled a role for ChbG as a monodeacetylase that removes the N-acetyl group at the non-reducing end. Consequently, GlcN6P- but not GlcNAc6P-containing saccharides likely function as coactivators of ChbR. Furthermore, ChbF removed the GlcN6P from the non-reducing terminus of the former saccharides, thereby degrading the inducers of the chb operon and facilitating growth on the saccharides. Consequently, ChbF was unable to hydrolyze GlcNAc6P-residues from the non-reducing end, contrary to previous assumptions but in agreement with structural modeling data and with the unusual catalytic mechanism of the family 4 of glycosidases, to which ChbF belongs. We also refuted the assumption that ChiA is a bifunctional endochitinase/lysozyme ChiA, and show that it is unable to degrade peptidoglycans but acts as a bona fide chitinase in vitro and in vivo, enabling growth of E. coli on chitin oligosaccharides when ectopically expressed. Overall, this study revises our understanding of the chitin, chitin oligosaccharide, and chitin disaccharide metabolism of E. coli.

摘要

大肠杆菌无法在聚合体和低聚物几丁质上生长,但通过表达 chb 操纵子(chbBCARFG),它可以在几丁二糖(GlcNAc-GlcNAc;N,N'-二乙酰壳二糖)和几丁三糖(GlcNAc-GlcNAc-GlcNAc;N,N',N''-三乙酰壳三糖)上生长。磷酸转移酶系统(PTS)转运蛋白 ChbBCA 促进两种糖跨内膜的运输及其在非还原端的伴随磷酸化,在细胞内产生 GlcNAc 6-磷酸-GlcNAc(GlcNAc6P-GlcNAc)和 GlcNAc6P-GlcNAc-GlcNAc,分别。我们重新研究了 PTS 产物的细胞内分解代谢,从而纠正了报道的 6-磷酸糖苷酶 ChbF、单脱乙酰酶 ChbG 和转录调节剂 ChbR 的功能。chbF 突变体中 GlcN6P-GlcNAc(GlcN6P-GlcNAc)和 GlcN6P-GlcNAc-GlcNAc 的积累揭示了 ChbG 作为一种单脱乙酰酶的作用,该酶去除非还原端的 N-乙酰基。因此,只有含有 GlcN6P 的糖而不是 GlcNAc6P 可能作为 ChbR 的共激活剂发挥作用。此外,ChbF 从前一种糖的非还原末端去除 GlcN6P,从而降解 chb 操纵子的诱导物,并促进糖的生长。因此,ChbF 不能从非还原端水解 GlcNAc6P-残基,这与之前的假设相反,但与结构建模数据以及 ChbF 所属的糖苷酶家族 4 的异常催化机制一致。我们还反驳了 ChiA 是一种双功能内切几丁质酶/溶菌酶 ChiA 的假设,并表明它不能降解肽聚糖,但在体外和体内都能作为一种真正的几丁质酶发挥作用,当异位表达时,它能使大肠杆菌在几丁寡糖上生长。总的来说,这项研究修正了我们对大肠杆菌几丁质、几丁寡糖和几丁二糖代谢的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验