Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
J Cell Sci. 2021 Apr 1;134(7):jcs254292. doi: 10.1242/jcs.254292.
Cell imaging has entered the 'Big Data' era. New technologies in light microscopy and molecular biology have led to an explosion in high-content, dynamic and multidimensional imaging data. Similar to the 'omics' fields two decades ago, our current ability to process, visualize, integrate and mine this new generation of cell imaging data is becoming a critical bottleneck in advancing cell biology. Computation, traditionally used to quantitatively test specific hypotheses, must now also enable iterative hypothesis generation and testing by deciphering hidden biologically meaningful patterns in complex, dynamic or high-dimensional cell image data. Data science is uniquely positioned to aid in this process. In this Perspective, we survey the rapidly expanding new field of data science in cell imaging. Specifically, we highlight how data science tools are used within current image analysis pipelines, propose a computation-first approach to derive new hypotheses from cell image data, identify challenges and describe the next frontiers where we believe data science will make an impact. We also outline steps to ensure broad access to these powerful tools - democratizing infrastructure availability, developing sensitive, robust and usable tools, and promoting interdisciplinary training to both familiarize biologists with data science and expose data scientists to cell imaging.
细胞成像已进入“大数据”时代。 显微镜技术和分子生物学的新技术使高内涵、动态和多维成像数据呈爆炸式增长。 与二十年前的“组学”领域类似,我们目前处理、可视化、整合和挖掘这新一代细胞成像数据的能力正成为推进细胞生物学的关键瓶颈。 计算,传统上用于定量检验特定假设,现在也必须通过破译复杂、动态或高维细胞图像数据中隐藏的有生物学意义的模式,来支持迭代的假设生成和检验。 数据科学在这个过程中具有独特的地位。 在这篇观点文章中,我们调查了细胞成像中迅速扩展的新数据科学领域。 具体而言,我们强调了数据科学工具如何在当前的图像分析管道中使用,提出了一种从细胞图像数据中推导出新假设的计算优先方法,确定了挑战并描述了我们认为数据科学将产生影响的下一个前沿领域。 我们还概述了确保广泛获取这些强大工具的步骤——使基础设施的可用性民主化,开发敏感、稳健和可用的工具,并促进跨学科培训,使生物学家熟悉数据科学,并使数据科学家熟悉细胞成像。