Suppr超能文献

pDeep3:基于快速少样本学习的更精确谱预测。

pDeep3: Toward More Accurate Spectrum Prediction with Fast Few-Shot Learning.

机构信息

Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100190, Beijing, China.

University of Chinese Academy of Sciences, 100049, Beijing, China.

出版信息

Anal Chem. 2021 Apr 13;93(14):5815-5822. doi: 10.1021/acs.analchem.0c05427. Epub 2021 Apr 2.

Abstract

Spectrum prediction using deep learning has attracted a lot of attention in recent years. Although existing deep learning methods have dramatically increased the prediction accuracy, there is still considerable space for improvement, which is presently limited by the difference of fragmentation types or instrument settings. In this work, we use the few-shot learning method to fit the data online to make up for the shortcoming. The method is evaluated using ten data sets, where the instruments includes Velos, QE, Lumos, and Sciex, with collision energies being differently set. Experimental results show that few-shot learning can achieve higher prediction accuracy with almost negligible computing resources. For example, on the data set from a untrained instrument Sciex-6600, within about 10 s, the prediction accuracy is increased from 69.7% to 86.4%; on the CID (collision-induced dissociation) data set, the prediction accuracy of the model trained by HCD (higher energy collision dissociation) spectra is increased from 48.0% to 83.9%. It is also shown that, the method is not critical to data quality and is sufficiently efficient to fill the accuracy gap. The source code of pDeep3 is available at http://pfind.ict.ac.cn/software/pdeep3.

摘要

深度学习的光谱预测近年来引起了广泛关注。尽管现有的深度学习方法显著提高了预测精度,但仍有相当大的改进空间,目前受到碎片化类型或仪器设置差异的限制。在这项工作中,我们使用少样本学习方法在线拟合数据,以弥补这一不足。该方法通过十个数据集进行评估,其中仪器包括 Velos、QE、Lumos 和 Sciex,碰撞能量设置不同。实验结果表明,少样本学习可以在几乎可以忽略不计的计算资源下实现更高的预测精度。例如,在来自未训练仪器 Sciex-6600 的数据集上,在大约 10 秒内,预测精度从 69.7%提高到 86.4%;在 CID(碰撞诱导解离)数据集上,通过 HCD(更高能量碰撞解离)光谱训练的模型的预测精度从 48.0%提高到 83.9%。结果还表明,该方法对数据质量不敏感,并且效率足够高,可以弥补精度差距。pDeep3 的源代码可在 http://pfind.ict.ac.cn/software/pdeep3 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验