Suppr超能文献

基于运动的自闭症早期预警信号的检测:实现技术与探索性研究方案

Towards Motor-Based Early Detection of Autism Red Flags: Enabling Technology and Exploratory Study Protocol.

机构信息

Department of Computer Science, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy.

Department of Child Psychiatry and Psychopharmacology, IRCCS Stella Maris Foundation, 56018 Pisa, Italy.

出版信息

Sensors (Basel). 2021 Mar 11;21(6):1971. doi: 10.3390/s21061971.

Abstract

Observing how children manipulate objects while they are playing can help detect possible autism spectrum disorders (ASD) at an early stage. For this purpose, specialists seek the so-called "red-flags" of motor signature of ASD for more precise diagnostic tests. However, a significant drawback to achieve this is that the observation of object manipulation by the child very often is not naturalistic, as it involves the physical presence of the specialist and is typically performed in hospitals. In this framework, we present a novel Internet of Things support in the form factory of a smart toy that can be used by specialists to perform indirect and non-invasive observations of the children in naturalistic conditions. While they play with the toy, children can be observed in their own environment and without the physical presence of the specialist. We also present the technical validation of the technology and the study protocol for the refinement of the diagnostic practice based on this technology.

摘要

观察儿童在玩耍时如何操作物体有助于在早期发现可能的自闭症谱系障碍 (ASD)。为此,专家寻求所谓的 ASD 运动特征的“红旗”,以进行更精确的诊断测试。然而,实现这一目标的一个显著缺点是,儿童对物体操作的观察通常不是自然的,因为它涉及专家的实际存在,并且通常在医院进行。在这个框架内,我们提出了一种新的物联网支持形式,即一个智能玩具工厂,可以由专家在自然条件下对儿童进行间接和非侵入性观察。当孩子们玩玩具时,可以在他们自己的环境中观察他们,而无需专家的实际存在。我们还介绍了该技术的技术验证以及基于该技术细化诊断实践的研究方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b14/7998381/93b76a6f67ad/sensors-21-01971-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验