Suppr超能文献

使用两种新的胸部 X 射线数据库中的 Ensemble-CNNs 进行 COVID-19 识别。

COVID-19 Recognition Using Ensemble-CNNs in Two New Chest X-ray Databases.

机构信息

Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy.

IEMN UMR CNRS 8520, Université Polytechnique Hauts de France, UPHF, 59300 Famars, France.

出版信息

Sensors (Basel). 2021 Mar 3;21(5):1742. doi: 10.3390/s21051742.

Abstract

The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the number of available X-ray scans labeled as COVID-19-infected is relatively small. Second, all the works that have been carried out in the field are separate; there are no unified data, classes, and evaluation protocols. In this work, based on public and newly collected data, we propose two X-ray COVID-19 databases, which are three-class COVID-19 and five-class COVID-19 datasets. For both databases, we evaluate different deep learning architectures. Moreover, we propose an Ensemble-CNNs approach which outperforms the deep learning architectures and shows promising results in both databases. In other words, our proposed Ensemble-CNNs achieved a high performance in the recognition of COVID-19 infection, resulting in accuracies of 100% and 98.1% in the three-class and five-class scenarios, respectively. In addition, our approach achieved promising results in the overall recognition accuracy of 75.23% and 81.0% for the three-class and five-class scenarios, respectively. We make our databases of COVID-19 X-ray scans publicly available to encourage other researchers to use it as a benchmark for their studies and comparisons.

摘要

从 X 光图像中识别 COVID-19 感染是学习和计算机视觉领域的一个新兴领域。尽管自 COVID-19(2019 年)出现以来,该领域已经做出了巨大的努力,但该领域仍然存在两个缺点。首先,标记为 COVID-19 感染的 X 光扫描数量相对较少。其次,该领域开展的所有工作都是分开的;没有统一的数据、类别和评估协议。在这项工作中,我们基于公开和新收集的数据,提出了两个 X 射线 COVID-19 数据库,即三分类 COVID-19 和五分类 COVID-19 数据集。对于这两个数据库,我们评估了不同的深度学习架构。此外,我们提出了一种 Ensemble-CNNs 方法,该方法优于深度学习架构,并在两个数据库中均显示出有前途的结果。换句话说,我们提出的 Ensemble-CNNs 在 COVID-19 感染的识别中表现出了很高的性能,在三分类和五分类场景下的准确率分别达到了 100%和 98.1%。此外,我们的方法在三分类和五分类场景下的整体识别准确率分别达到了 75.23%和 81.0%,取得了有希望的结果。我们将 COVID-19 X 射线扫描的数据库公开,以鼓励其他研究人员将其用作基准进行研究和比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68cf/7959300/be15b5bd4916/sensors-21-01742-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验