Suppr超能文献

基于机器学习和优化技术的矿渣脱硫石膏基碱激发材料性能表征与组成设计

Performance Characterization and Composition Design Using Machine Learning and Optimal Technology for Slag-Desulfurization Gypsum-Based Alkali-Activated Materials.

作者信息

Liu Xinyi, Liu Hao, Wang Zhiqing, Zang Xiaoyu, Ren Jiaolong, Zhao Hongbo

机构信息

School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China.

出版信息

Materials (Basel). 2024 Jul 17;17(14):3540. doi: 10.3390/ma17143540.

Abstract

Fly ash-slag-based alkali-activated materials have excellent mechanical performance and a low carbon footprint, and they have emerged as a promising alternative to Portland cement. Therefore, replacing traditional Portland cement with slag-desulfurization gypsum-based alkali-activated materials will help to make better use of the waste, protect the environment, and improve the materials' performance. In order to better understand it and thus better use it in engineering, it needs to be characterized for performance and compositional design. This study developed a novel framework for performance characterization and composition design by combining Categorical Gradient Boosting (CatBoost), simplicial homology global optimization (SHGO), and laboratory tests. The CatBoost characterization model was evaluated and discussed based on SHapley Additive exPlanations (SHAPs) and a partial dependence plot (PDP). Through the proposed framework, the optimal composition of the slag-desulfurization gypsum-based alkali-activated materials with the maximum flexural strength and compressive strength at 1, 3, and 7 days is Ca(OH): 3.1%, fly ash: 2.6%, DG: 0.53%, alkali: 4.3%, modulus: 1.18, and W/G: 0.49. Compared with the material composition obtained from the traditional experiment, the actual flexural strength and compressive strength at 1, 3, and 7 days increased by 26.67%, 6.45%, 9.64%, 41.89%, 9.77%, and 7.18%, respectively. In addition, the results of the optimal composition obtained by laboratory tests are very close to the predictions of the developed framework, which shows that CatBoost characterizes the performance well based on test data. The developed framework provides a reasonable, scientific, and helpful way to characterize the performance and determine the optimal composition for civil materials.

摘要

基于粉煤灰-矿渣的碱激发材料具有优异的力学性能和较低的碳足迹,已成为波特兰水泥的一种有前景的替代品。因此,用矿渣-脱硫石膏基碱激发材料替代传统的波特兰水泥将有助于更好地利用废弃物、保护环境并提高材料性能。为了更好地理解它并因此在工程中更好地应用它,需要对其进行性能表征和成分设计。本研究通过结合分类梯度提升(CatBoost)、单纯形同调全局优化(SHGO)和实验室测试,开发了一种用于性能表征和成分设计的新框架。基于SHapley加性解释(SHAPs)和部分依赖图(PDP)对CatBoost表征模型进行了评估和讨论。通过所提出的框架,在1天、3天和7天时具有最大抗折强度和抗压强度的矿渣-脱硫石膏基碱激发材料的最佳组成为:Ca(OH):3.1%,粉煤灰:2.6%,DG:0.53%,碱:4.3%,模量:1.18,水胶比:0.49。与传统实验获得的材料组成相比,1天、3天和7天时的实际抗折强度和抗压强度分别提高了26.67%、6.45%、9.64%、41.89%、9.77%和7.18%。此外,实验室测试获得的最佳组成结果与所开发框架的预测非常接近,这表明CatBoost基于测试数据能很好地表征性能。所开发的框架为表征民用材料性能和确定最佳组成提供了一种合理、科学且有用的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32b6/11279024/75f2b161275a/materials-17-03540-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验