Suppr超能文献

通过嵌段共聚物模板光纤局域表面等离子体共振生物传感器实现金纳米颗粒增强的DNA杂交检测。

Gold Nanoparticle-Enhanced Detection of DNA Hybridization by a Block Copolymer-Templating Fiber-Optic Localized Surface Plasmon Resonance Biosensor.

作者信息

Lu Mengdi, Peng Wei, Lin Ming, Wang Fang, Zhang Yang

机构信息

College of Physics, Dalian University of Technology, Dalian 116024, China.

出版信息

Nanomaterials (Basel). 2021 Mar 1;11(3):616. doi: 10.3390/nano11030616.

Abstract

To overcome low surface coverage and aggregation of particles, which usually restricts the sensitivity and resolution of conventional localized surface plasmon resonance (LSPR) fiber-optic sensors, we propose a simple self-assembled templating technique that uses a nanometer thickness block copolymer (BCP) layer of poly(styrene-b-4-vinylpyridine) to form a 33 nm gold nanoparticle (AuNP) monolayer with high uniformity and density for LSPR sensing. The LSPR resonance wavelength for this PS-b-P4VP templated methodology is 592 nm and its refractive index sensitivity is up to 386.36 nm/RIU, both of which are significantly improved compared to those of conventional LSPR techniques. Calibrated by a layer-by-layer polyelectrolyte deposition procedure, the decay length of this LSPR sensor is calculated to be 78 nm, which is lower than other traditional self-assembled LSPR sensors. Furthermore, hybridization between target ssDNA, which is linked with capture ssDNA on the LSPR biosensor and DNA-AuNP conjugates, leads to a low detection limit of 67 pM. These enhanced performances are significant and valuable for high-sensitivity and cost-effective LSPR biosensing applications.

摘要

为了克服通常会限制传统局域表面等离子体共振(LSPR)光纤传感器灵敏度和分辨率的颗粒表面覆盖率低和聚集问题,我们提出了一种简单的自组装模板技术,该技术使用聚(苯乙烯 - b - 4 - 乙烯基吡啶)的纳米厚度嵌段共聚物(BCP)层来形成具有高均匀性和密度的33纳米金纳米颗粒(AuNP)单层,用于LSPR传感。这种PS - b - P4VP模板方法的LSPR共振波长为592纳米,其折射率灵敏度高达386.36纳米/RIU,与传统LSPR技术相比均有显著提高。通过逐层聚电解质沉积程序校准后,该LSPR传感器的衰减长度计算为78纳米,低于其他传统自组装LSPR传感器。此外,与LSPR生物传感器上捕获单链DNA相连的目标单链DNA与DNA - AuNP共轭物之间的杂交导致检测限低至67 pM。这些增强的性能对于高灵敏度和经济高效的LSPR生物传感应用具有重要意义和价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3390/7998318/79e3226a8606/nanomaterials-11-00616-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验