Suppr超能文献

基于高分辨率数字光处理立体光刻技术的微晶格复合材料的制造与压缩行为

Fabrication and Compressive Behavior of a Micro-Lattice Composite by High Resolution DLP Stereolithography.

作者信息

Shin Chow Shing, Chang Yu Chia

机构信息

Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.

出版信息

Polymers (Basel). 2021 Mar 4;13(5):785. doi: 10.3390/polym13050785.

Abstract

Lattice structures are superior to stochastic foams in mechanical properties and are finding increasing applications. Their properties can be tailored in a wide range through adjusting the design and dimensions of the unit cell, changing the constituent materials as well as forming into hierarchical structures. In order to achieve more levels of hierarchy, the dimensions of the fundamental lattice have to be small enough. Although lattice size of several microns can be fabricated using the two-photon polymerization technique, sophisticated and costly equipment is required. To balance cost and performance, a low-cost high resolution micro-stereolithographic system has been developed in this work based on a commercial digital light processing (DLP) projector. Unit cell lengths as small as 100 μm have been successfully fabricated. Decreasing the unit cell size from 150 to 100 μm increased the compressive stiffness by 26%. Different pretreatments to facilitate the electroless plating of nickel on the lattice structure have been attempted. A pretreatment of dip coating in a graphene suspension is the most successful and increased the strength and stiffness by 5.3 and 3.6 times, respectively. Even a very light and incomplete nickel plating in the interior has increase the structural stiffness and strength by more than twofold.

摘要

晶格结构在力学性能方面优于随机泡沫,并且其应用越来越广泛。通过调整晶胞的设计和尺寸、改变组成材料以及形成分级结构,可以在很大范围内对其性能进行定制。为了实现更高层次的分级,基本晶格的尺寸必须足够小。尽管使用双光子聚合技术可以制造出几微米的晶格尺寸,但需要复杂且昂贵的设备。为了平衡成本和性能,在这项工作中基于商用数字光处理(DLP)投影仪开发了一种低成本高分辨率微立体光刻系统。已经成功制造出小至100μm的晶胞长度。将晶胞尺寸从150μm减小到100μm,压缩刚度提高了26%。已经尝试了不同的预处理方法以促进在晶格结构上进行化学镀镍。在石墨烯悬浮液中浸涂的预处理最为成功,强度和刚度分别提高了5.3倍和3.6倍。即使内部的镀镍非常轻且不完全,结构刚度和强度也提高了两倍多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc97/7961826/c51b7fb9a7de/polymers-13-00785-g001.jpg

相似文献

3
The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology.
Micromachines (Basel). 2020 May 20;11(5):518. doi: 10.3390/mi11050518.
4
Investigating the Potential of Electroless Nickel Plating for Fabricating Ultra-Porous Metal-Based Lattice Structures Using PolyHIPE Templates.
ACS Appl Mater Interfaces. 2023 Jun 28;15(25):30769-30779. doi: 10.1021/acsami.3c04637. Epub 2023 Jun 13.
5
Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites.
J Mech Behav Biomed Mater. 2019 Jun;94:10-18. doi: 10.1016/j.jmbbm.2019.02.029. Epub 2019 Mar 1.
6
Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing.
Adv Mater. 2020 Jul;32(28):e2000797. doi: 10.1002/adma.202000797. Epub 2020 Jun 8.
7
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
PLoS One. 2020 Oct 28;15(10):e0240237. doi: 10.1371/journal.pone.0240237. eCollection 2020.
8
Microstructure and Properties of Hollow Octet Nickel Lattice Materials.
Materials (Basel). 2022 Nov 25;15(23):8417. doi: 10.3390/ma15238417.
9
Multifunctional Polymer-Metal Lattice Composites via Hybrid Additive Manufacturing Technology.
Micromachines (Basel). 2023 Nov 30;14(12):2191. doi: 10.3390/mi14122191.
10
3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer.
Addit Manuf. 2018 Oct;23:374-380. doi: 10.1016/j.addma.2018.08.019. Epub 2018 Aug 18.

引用本文的文献

1
Design considerations for digital light processing bioprinters.
Appl Phys Rev. 2024 Sep;11(3):031314. doi: 10.1063/5.0187558.
2
A Systematic Review on the Generation of Organic Structures through Additive Manufacturing Techniques.
Polymers (Basel). 2024 Jul 16;16(14):2027. doi: 10.3390/polym16142027.
3
RETRACTED: Embedded Sensors with 3D Printing Technology: Review.
Sensors (Basel). 2024 Mar 19;24(6):1955. doi: 10.3390/s24061955.

本文引用的文献

1
A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem.
J Mater Sci Mater Med. 2020 Aug 20;31(9):78. doi: 10.1007/s10856-020-06420-7.
2
A compact LED-based projection microstereolithography for producing 3D microstructures.
Sci Rep. 2019 Dec 23;9(1):19692. doi: 10.1038/s41598-019-56044-3.
4
Ultralight, ultrastiff mechanical metamaterials.
Science. 2014 Jun 20;344(6190):1373-7. doi: 10.1126/science.1252291.
5
High-strength cellular ceramic composites with 3D microarchitecture.
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2453-8. doi: 10.1073/pnas.1315147111. Epub 2014 Feb 3.
6
Fabrication and deformation of three-dimensional hollow ceramic nanostructures.
Nat Mater. 2013 Oct;12(10):893-8. doi: 10.1038/nmat3738. Epub 2013 Sep 1.
7
Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport.
Adv Mater. 2012 Feb 7;24(6):811-6. doi: 10.1002/adma.201103818. Epub 2012 Jan 2.
8
A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography.
Biomaterials. 2009 Aug;30(23-24):3801-9. doi: 10.1016/j.biomaterials.2009.03.055. Epub 2009 Apr 29.
9
Remote manipulation of micronanomachines containing magnetic nanoparticles.
Opt Lett. 2009 Mar 1;34(5):581-3. doi: 10.1364/ol.34.000581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验