Assis Marcelo, Simoes Luiz Gustavo P, Tremiliosi Guilherme C, Coelho Dyovani, Minozzi Daniel T, Santos Renato I, Vilela Daiane C B, Santos Jeziel Rodrigues do, Ribeiro Lara Kelly, Rosa Ieda Lucia Viana, Mascaro Lucia Helena, Andrés Juan, Longo Elson
CDMF, LIEC, Federal University of São Carlos-(UFSCar), 13565-905 São Carlos, SP, Brazil.
Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain.
Nanomaterials (Basel). 2021 Mar 4;11(3):638. doi: 10.3390/nano11030638.
COVID-19, as the cause of a global pandemic, has resulted in lockdowns all over the world since early 2020. Both theoretical and experimental efforts are being made to find an effective treatment to suppress the virus, constituting the forefront of current global safety concerns and a significant burden on global economies. The development of innovative materials able to prevent the transmission, spread, and entry of COVID-19 pathogens into the human body is currently in the spotlight. The synthesis of these materials is, therefore, gaining momentum, as methods providing nontoxic and environmentally friendly procedures are in high demand. Here, a highly virucidal material constructed from SiO-Ag composite immobilized in a polymeric matrix (ethyl vinyl acetate) is presented. The experimental results indicated that the as-fabricated samples exhibited high antibacterial activity towards () and () as well as towards SARS-CoV-2. Based on the present results and radical scavenger experiments, we propose a possible mechanism to explain the enhancement of the biocidal activity. In the presence of O and HO, the plasmon-assisted surface mechanism is the major reaction channel generating reactive oxygen species (ROS). We believe that the present strategy based on the plasmonic effect would be a significant contribution to the design and preparation of efficient biocidal materials. This fundamental research is a precedent for the design and application of adequate technology to the next-generation of antiviral surfaces to combat SARS-CoV-2.
自2020年初以来,作为全球大流行的起因,新冠病毒已导致全球各地实施封锁。目前,人们正在从理论和实验两方面努力寻找有效的治疗方法来抑制该病毒,这构成了当前全球安全问题的前沿,并给全球经济带来了巨大负担。能够防止新冠病毒病原体传播、扩散和进入人体的创新材料的研发目前备受关注。因此,这些材料的合成正加速推进,因为对提供无毒且环保工艺的方法有很高的需求。在此,展示了一种由固定在聚合物基体(乙烯-醋酸乙烯酯)中的SiO-Ag复合材料构建的高杀病毒材料。实验结果表明,所制备的样品对()和()以及对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)均表现出高抗菌活性。基于目前的结果和自由基清除剂实验,我们提出了一种可能的机制来解释杀菌活性的增强。在有O和HO存在的情况下,等离子体激元辅助表面机制是产生活性氧(ROS)的主要反应通道。我们相信,基于等离子体激元效应的当前策略将对高效杀菌材料的设计和制备做出重大贡献。这项基础研究是将适当技术设计和应用于下一代抗病毒表面以对抗SARS-CoV-2的一个先例。