文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

牙科用生物聚合物杂化颗粒

Biopolymers Hybrid Particles Used in Dentistry.

作者信息

Chen I-Hao, Lee Tzer-Min, Huang Chih-Ling

机构信息

School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.

出版信息

Gels. 2021 Mar 22;7(1):31. doi: 10.3390/gels7010031.


DOI:10.3390/gels7010031
PMID:33809903
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8005972/
Abstract

This literature review provides an overview of the fabrication and application of biopolymer hybrid particles in dentistry. A total of 95 articles have been included in this review. In the review paper, the common inorganic particles and biopolymers used in dentistry are discussed in general, and detailed examples of inorganic particles (i.e., hydroxyapatite, calcium phosphate, and bioactive glass) and biopolymers such as collagen, gelatin, and chitosan have been drawn from the scientific literature and practical work. Among the included studies, calcium phosphate including hydroxyapatite is the most widely applied for inorganic particles used in dentistry, but bioactive glass is more applicable and multifunctional than hydroxyapatite and is currently used in clinical practice. Today, biopolymer hybrid particles are receiving more attention as novel materials for several applications in dentistry, such as drug delivery systems, bone repair, and periodontal regeneration surgery. The literature published on the biopolymer gel-assisted synthesis of inorganic particles for dentistry is somewhat limited, and therefore, this article focuses on reviewing and discussing the biopolymer hybrid particles used in dentistry.

摘要

这篇文献综述概述了生物聚合物杂化颗粒在牙科领域的制备与应用。本综述共纳入95篇文章。在这篇综述论文中,对牙科中常用的无机颗粒和生物聚合物进行了总体讨论,并从科学文献和实际工作中选取了无机颗粒(即羟基磷灰石、磷酸钙和生物活性玻璃)以及胶原蛋白、明胶和壳聚糖等生物聚合物的详细实例。在所纳入的研究中,包括羟基磷灰石在内的磷酸钙是牙科应用中最广泛使用的无机颗粒,但生物活性玻璃比羟基磷灰石更具适用性和多功能性,目前已应用于临床实践。如今,生物聚合物杂化颗粒作为牙科多种应用的新型材料正受到更多关注,如药物递送系统、骨修复和牙周再生手术。关于用于牙科的无机颗粒的生物聚合物凝胶辅助合成的相关文献较为有限,因此,本文重点对牙科中使用的生物聚合物杂化颗粒进行综述和讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/c7781bd4bd3e/gels-07-00031-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/1162f62619f4/gels-07-00031-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/a2718feeeab0/gels-07-00031-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/feb46fcd98d4/gels-07-00031-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/eadb775f72f7/gels-07-00031-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/5a364f6a00c6/gels-07-00031-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/84effca0e926/gels-07-00031-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/57e9c0b56d7d/gels-07-00031-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/c7781bd4bd3e/gels-07-00031-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/1162f62619f4/gels-07-00031-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/a2718feeeab0/gels-07-00031-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/feb46fcd98d4/gels-07-00031-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/eadb775f72f7/gels-07-00031-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/5a364f6a00c6/gels-07-00031-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/84effca0e926/gels-07-00031-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/57e9c0b56d7d/gels-07-00031-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2d5/8005972/c7781bd4bd3e/gels-07-00031-g008.jpg

相似文献

[1]
Biopolymers Hybrid Particles Used in Dentistry.

Gels. 2021-3-22

[2]
Recent Progress in the Synthesis and Biomedical Properties of Natural Biopolymer Composites.

Curr Med Chem. 2021

[3]
Chitosan nanoparticle applications in dentistry: a sustainable biopolymer.

Front Chem. 2024-4-10

[4]
Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique.

Carbohydr Polym. 2018-5-30

[5]
Role of Chitosan Hydrogels in Clinical Dentistry.

Gels. 2023-8-29

[6]
Effect of biopolymers on structure of hydroxyapatite and interfacial interactions in biomimetically synthesized hydroxyapatite/biopolymer nanocomposites.

Ann Biomed Eng. 2008-6

[7]
Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects.

Adv Colloid Interface Sci. 2016-12-16

[8]
Biopolymer/Calcium phosphate scaffolds for bone tissue engineering.

Adv Healthc Mater. 2013-12-16

[9]
Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure.

J Colloid Interface Sci. 2017-12-12

[10]
Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.

J Biomed Mater Res A. 2012-12-18

引用本文的文献

[1]
Chitosan, a Natural Polymer, is an Excellent Sustained-Release Carrier for Amide Local Anesthetics.

J Pain Res. 2024-10-30

[2]
A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy.

J Nanobiotechnology. 2024-6-21

[3]
Bacteria for Bioplastics: Progress, Applications, and Challenges.

ACS Omega. 2024-2-12

[4]
Polyvinylpyrrolidone-Alginate-Carbonate Hydroxyapatite Porous Composites for Dental Applications.

Materials (Basel). 2023-6-20

[5]
Human Treated Dentin Matrix Hydrogel as a Drug Delivery Scaffold for Regenerative Endodontics.

Iran Endod J. 2022

本文引用的文献

[1]
A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities.

Mater Today Bio. 2021-2-12

[2]
Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered membranes for guided bone regeneration.

Carbohydr Polym. 2021-5-15

[3]
A critical review on production of biopolymers from algae biomass and their applications.

Bioresour Technol. 2021-6

[4]
Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell.

Mater Sci Eng C Mater Biol Appl. 2021-3

[5]
Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds.

Mater Sci Eng C Mater Biol Appl. 2021-1

[6]
The use of bioactive glass (BAG) in dental composites: A critical review.

Dent Mater. 2021-2

[7]
Inorganic Fillers for Dental Resin Composites: Present and Future.

ACS Biomater Sci Eng. 2016-1-11

[8]
A journey to the world of fascinating ZnO nanocomposites made of chitosan, starch, cellulose, and other biopolymers: Progress in recent achievements in eco-friendly food packaging, biomedical, and water remediation technologies.

Int J Biol Macromol. 2021-2-15

[9]
Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review.

Acta Biomater. 2021-3-15

[10]
2D titanium carbide(MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration.

Mater Sci Eng C Mater Biol Appl. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索