Suppr超能文献

用于 SARS-CoV-2 感染引起的细胞扰动的网络表示的资源。

A Resource for the Network Representation of Cell Perturbations Caused by SARS-CoV-2 Infection.

机构信息

Fondazione Human Technopole, Department of Biology, Via Cristina Belgioioso, 171, 20157 Milan, Italy.

Department of Biology, University of Rome Tor Vergata, Via delle Ricerca Scientifica 1, 00133 Rome, Italy.

出版信息

Genes (Basel). 2021 Mar 22;12(3):450. doi: 10.3390/genes12030450.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has caused more than 2.3 million casualties worldwide and the lack of effective treatments is a major health concern. The development of targeted drugs is held back due to a limited understanding of the molecular mechanisms underlying the perturbation of cell physiology observed after viral infection. Recently, several approaches, aimed at identifying cellular proteins that may contribute to COVID-19 pathology, have been reported. Albeit valuable, this information offers limited mechanistic insight as these efforts have produced long lists of cellular proteins, the majority of which are not annotated to any cellular pathway. We have embarked in a project aimed at bridging this mechanistic gap by developing a new bioinformatic approach to estimate the functional distance between a subset of proteins and a list of pathways. A comprehensive literature search allowed us to annotate, in the SIGNOR 2.0 resource, causal information underlying the main molecular mechanisms through which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related coronaviruses affect the host-cell physiology. Next, we developed a new strategy that enabled us to link SARS-CoV-2 interacting proteins to cellular phenotypes via paths of causal relationships. Remarkably, the extensive information about inhibitors of signaling proteins annotated in SIGNOR 2.0 makes it possible to formulate new potential therapeutic strategies. The proposed approach, which is generally applicable, generated a literature-based causal network that can be used as a framework to formulate informed mechanistic hypotheses on COVID-19 etiology and pathology.

摘要

2019 年冠状病毒病(COVID-19)大流行已在全球造成超过 230 万人死亡,缺乏有效治疗方法是一个主要的健康关注点。由于对病毒感染后观察到的细胞生理学扰动的分子机制的了解有限,靶向药物的开发受到阻碍。最近,已经报道了几种旨在鉴定可能导致 COVID-19 病理学的细胞蛋白的方法。尽管这些信息很有价值,但由于这些努力产生了大量的细胞蛋白列表,其中大多数都没有注释到任何细胞途径,因此提供的机制见解有限。我们已经着手开展一个项目,旨在通过开发一种新的生物信息学方法来弥合这一机制差距,该方法旨在估计蛋白质子集与途径列表之间的功能距离。全面的文献检索使我们能够在 SIGNOR 2.0 资源中注释严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)和相关冠状病毒影响宿主细胞生理学的主要分子机制的因果信息。接下来,我们开发了一种新策略,使我们能够通过因果关系路径将 SARS-CoV-2 相互作用蛋白与细胞表型联系起来。值得注意的是,SIGNOR 2.0 中注释的信号蛋白抑制剂的广泛信息使得制定新的潜在治疗策略成为可能。所提出的方法通常适用,可以生成基于文献的因果网络,可作为制定关于 COVID-19 病因和病理学的有根据的机制假设的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb46/8004236/d41ca24f8ba0/genes-12-00450-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验