Suppr超能文献

首次在自适应 MR 引导放疗中实现自主、无监督的治疗计划,并将其应用于前列腺癌患者。

First experience of autonomous, un-supervised treatment planning integrated in adaptive MR-guided radiotherapy and delivered to a patient with prostate cancer.

机构信息

Section for Biomedical Physic, Department of Radiation Oncology, University Hospital Tübingen, Germany.

Section for Biomedical Physic, Department of Radiation Oncology, University Hospital Tübingen, Germany.

出版信息

Radiother Oncol. 2021 Jun;159:197-201. doi: 10.1016/j.radonc.2021.03.032. Epub 2021 Apr 2.

Abstract

BACKGROUND AND PURPOSE

Currently clinical radiotherapy (RT) planning consists of a multi-step routine procedure requiring human interaction which often results in a time-consuming and fragmented process with limited robustness. Here we present an autonomous un-supervised treatment planning approach, integrated as basis for online adaptive magnetic resonance guided RT (MRgRT), which was delivered to a prostate cancer patient as a first-in-human experience.

MATERIALS AND METHODS

For an intermediate risk prostate cancer patient OARs and targets were automatically segmented using a deep learning-based software and logical volume operators. A baseline plan for the 1.5 T MR-Linac (20x3 Gy) was automatically generated using particle swarm optimization (PSO) without any human interaction. Plan quality was evaluated by predefined dosimetric criteria including appropriate tolerances. Online plan adaptation during clinical MRgRT was defined as first checkpoint for human interaction.

RESULTS

OARs and targets were successfully segmented (3 min) and used for automatic plan optimization (300 min). The autonomous generated plan satisfied 12/16 dosimetric criteria, however all remained within tolerance. Without prior human validation, this baseline plan was successfully used during online MRgRT plan adaptation, where 14/16 criteria were fulfilled. As postulated, human interaction was necessary only during plan adaptation.

CONCLUSION

Autonomous, un-supervised data preparation and treatment planning was first-in-human shown to be feasible for adaptive MRgRT and successfully applied. The checkpoint for first human intervention was at the time of online MRgRT plan adaptation. Autonomous planning reduced the time delay between simulation and start of RT and may thus allow for real-time MRgRT applications in the future.

摘要

背景与目的

目前的临床放射治疗(RT)计划包括一个多步骤的常规程序,需要人为交互,这往往导致耗时且碎片化的过程,稳健性有限。在这里,我们提出了一种自主的无监督治疗计划方法,作为在线自适应磁共振引导放射治疗(MRgRT)的基础,首次应用于前列腺癌患者。

材料与方法

对于一名中危前列腺癌患者,使用基于深度学习的软件和逻辑体积运算符自动分割 OARs 和靶区。使用粒子群优化(PSO)在没有任何人为交互的情况下自动生成基线计划(1.5T MR-Linac,20x3Gy)。通过预定义的剂量学标准评估计划质量,包括适当的耐受度。在线 MRgRT 期间的计划自适应被定义为人为交互的第一个检查点。

结果

成功地对 OARs 和靶区进行了分割(3 分钟)并用于自动计划优化(300 分钟)。自主生成的计划满足 12/16 项剂量学标准,但都在耐受范围内。在没有事先进行人为验证的情况下,这个基线计划在在线 MRgRT 计划自适应期间成功使用,其中 14/16 项标准得到满足。正如假设的那样,只有在计划自适应期间才需要人为干预。

结论

自主、无监督的数据准备和治疗计划首次在自适应 MRgRT 中得到了证明是可行的,并得到了成功应用。第一次人为干预的检查点是在在线 MRgRT 计划自适应时。自主规划减少了模拟和开始 RT 之间的时间延迟,因此可能允许未来实现实时 MRgRT 应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验