Suppr超能文献

设计一个数据集的逻辑回归模型来预测糖尿病患者的足部溃疡:高密度脂蛋白(HDL)胆固醇是负预测因子。

Designing a Logistic Regression Model for a Dataset to Predict Diabetic Foot Ulcer in Diabetic Patients: High-Density Lipoprotein (HDL) Cholesterol Was the Negative Predictor.

机构信息

Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.

Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.

出版信息

J Diabetes Res. 2021 Mar 16;2021:5521493. doi: 10.1155/2021/5521493. eCollection 2021.

Abstract

OBJECTIVES

Although the risk factors for diabetic neuropathy and diabetic foot ulcer have been detected, there was no practical modeling for their prediction. We aimed to design a logistic regression model on an Iranian dataset to predict the probability of experiencing diabetic foot ulcers up to a considered age in diabetic patients.

METHODS

The present study was a statistical modeling on a previously published dataset. The covariates were sex, age, body mass index (BMI), fasting blood sugar (FBS), hemoglobin A1C (HbA1C), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), insulin dependency, and statin use. The final model of logistic regression was designed through a manual stepwise method. To study the performance of the model, an area under receiver operating characteristic (AUC) curve was reported. A scoring system was defined according to the coefficients to be used in logistic function for calculation of the probability.

RESULTS

The pretest probability for the outcome was 30.83%. The final model consisted of age (1 = 0.133), BMI (2 = 0.194), FBS (3 = 0.011), HDL (4 = -0.118), and insulin dependency (5 = 0.986) ( < 0.1). The performance of the model was definitely acceptable (AUC = 0.914).

CONCLUSION

This model can be used clinically for consulting the patients. The only negative predictor of the risk is HDL cholesterol. Keeping the HDL level more than 50 (mg/dl) is strongly suggested. Logistic regression modeling is a simple and practical method to be used in the clinic.

摘要

目的

尽管已经发现了糖尿病神经病变和糖尿病足溃疡的危险因素,但目前还没有实用的预测模型。本研究旨在基于伊朗的数据集,设计一个逻辑回归模型,以预测糖尿病患者在特定年龄时发生糖尿病足溃疡的概率。

方法

本研究为基于已发表数据集的统计学建模。协变量包括性别、年龄、体重指数(BMI)、空腹血糖(FBS)、糖化血红蛋白(HbA1C)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、甘油三酯(TG)、胰岛素依赖和他汀类药物使用情况。通过手动逐步法设计逻辑回归的最终模型。为了研究模型的性能,报告了接收者操作特征(ROC)曲线下的面积(AUC)。根据系数定义了一个评分系统,以便在逻辑函数中用于计算概率。

结果

结局的预测试验概率为 30.83%。最终模型包括年龄(1 = 0.133)、BMI(2 = 0.194)、FBS(3 = 0.011)、HDL(4 = -0.118)和胰岛素依赖(5 = 0.986)(<0.1)。该模型的性能肯定是可以接受的(AUC = 0.914)。

结论

该模型可用于临床咨询患者。唯一的风险负预测因子是高密度脂蛋白胆固醇。强烈建议将 HDL 水平保持在 50 以上(mg/dl)。逻辑回归建模是一种简单实用的临床应用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1a/7994070/f9dc559d1276/JDR2021-5521493.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验