Voloh Benjamin, Watson Marcus R, König Seth, Womelsdorf Thilo
Vanderbilt University Nashville, USA.
York University Toronto, Canada.
J Eye Mov Res. 2020 May 12;12(8). doi: 10.16910/jemr.12.8.3.
Saccade detection is a critical step in the analysis of gaze data. A common method for saccade detection is to use a simple threshold for velocity or acceleration values, which can be estimated from the data using the mean and standard deviation. However, this method has the downside of being influenced by the very signal it is trying to detect, the outlying velocities or accelerations that occur during saccades. We propose instead to use the median absolute deviation (MAD), a robust estimator of dispersion that is not influenced by outliers. We modify an algorithm proposed by Nyström and colleagues, and quantify saccade detection performance in both simulated and human data. Our modified algorithm shows a significant and marked improvement in saccade detection - showing both more true positives and less false negatives - especially under higher noise levels. We conclude that robust estimators can be widely adopted in other common, automatic gaze classification algorithms due to their ease of implementation.
扫视检测是注视数据分析中的关键步骤。一种常用的扫视检测方法是对速度或加速度值使用简单阈值,这些值可根据数据的均值和标准差来估计。然而,这种方法的缺点是会受到其试图检测的信号本身的影响,即扫视过程中出现的异常速度或加速度。相反,我们建议使用中位数绝对偏差(MAD),这是一种不受异常值影响的稳健离散估计器。我们修改了由尼斯特罗姆及其同事提出的一种算法,并在模拟数据和人类数据中量化扫视检测性能。我们改进后的算法在扫视检测方面显示出显著且明显的改进——显示出更多的真阳性和更少的假阴性——尤其是在较高噪声水平下。我们得出结论,由于稳健估计器易于实现,它们可在其他常见的自动注视分类算法中广泛采用。