Faculty of Computers and Information, Minia University, Minia, Egypt.
Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt.
J Adv Res. 2020 Oct 17;29:147-157. doi: 10.1016/j.jare.2020.10.001. eCollection 2021 Mar.
Quantum cloning operation, started with no-go theorem which proved that there is no capability to perform a cloning operation on an unknown quantum state, however, a number of trials proved that we can make approximate quantum state cloning that is still with some errors.
To the best of our knowledge, this paper is the first of its kind to attempt using meta-heuristic algorithm such as Adaptive Guided Differential Evolution (AGDE), to tackle the problem of quantum cloning circuit parameters to enhance the cloning fidelity.
To investigate the effectiveness of the AGDE, the extensive experiments have demonstrated that the AGDE can achieve outstanding performance compared to other well-known meta-heuristics including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA), Enhanced Differential Evolution algorithm with novel control parameter adaptation (PaDE), Improved Multi-operator Differential Evolution Algorithm (IMODE), Parameters with adaptive learning mechanism (PALM), QUasi-Affine TRansformation Evolutionary algorithm (QUATRE), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Cuckoo Search (CS), Bat-inspired Algorithm (BA), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA).
In the present study, AGDE is applied to improve the fidelity of quantum cloning problem and the obtained parameter values minimize the cloning difference error value down to .
Accordingly, the qualitative and quantitative measurements including average, standard deviation, convergence curves of the competitive algorithms over 30 independent runs, proved the superiority of AGDE to enhance the cloning fidelity.
量子克隆操作始于一个否定定理,该定理证明了对未知量子态进行克隆操作是不可能的,然而,许多实验证明我们可以进行近似的量子态克隆,只是仍然存在一些误差。
据我们所知,本文首次尝试使用启发式算法,如自适应引导差分进化(AGDE),来解决量子克隆电路参数的问题,以提高克隆保真度。
为了研究 AGDE 的有效性,广泛的实验表明,与其他著名的启发式算法相比,AGDE 具有出色的性能,包括:增强型最小二乘哈代进化算法(ELSHADE-SPACMA)、具有新颖控制参数自适应的增强差分进化算法(PaDE)、改进的多算子差分进化算法(IMODE)、具有自适应学习机制的参数(PALM)、准仿射变换进化算法(QUATRE)、粒子群优化算法(PSO)、引力搜索算法(GSA)、布谷鸟搜索算法(CS)、蝙蝠启发算法(BA)、灰狼优化算法(GWO)和鲸鱼优化算法(WOA)。
在本研究中,AGDE 被应用于提高量子克隆问题的保真度,并且获得的参数值将克隆差异误差值最小化到 。
因此,包括平均值、标准差、30 次独立运行的竞争算法的收敛曲线在内的定性和定量测量证明了 AGDE 提高克隆保真度的优越性。