Suppr超能文献

一种用于基于区域的图像融合的混合群体智能算法。

A hybrid swarm intelligence algorithm for region-based image fusion.

作者信息

Salgotra Rohit, Lamba Amanjot Kaur, Talwar Dhruv, Gulati Dhairya, Gandomi Amir H

机构信息

Faculty of Physics and Applied Computer Science, AGH University of Science & Technology, Kraków, Poland.

MEU Research Unit, Middle East University, Amman, Jordan.

出版信息

Sci Rep. 2024 Jun 14;14(1):13723. doi: 10.1038/s41598-024-63746-w.

Abstract

This paper proposes a novel multi-hybrid algorithm named DHPN, using the best-known properties of dwarf mongoose algorithm (DMA), honey badger algorithm (HBA), prairie dog optimizer (PDO), cuckoo search (CS), grey wolf optimizer (GWO) and naked mole rat algorithm (NMRA). It follows an iterative division for extensive exploration and incorporates major parametric enhancements for improved exploitation operation. To counter the local optima problems, a stagnation phase using CS and GWO is added. Six new inertia weight operators have been analyzed to adapt algorithmic parameters, and the best combination of these parameters has been found. An analysis of the suitability of DHPN towards population variations and higher dimensions has been performed. For performance evaluation, the CEC 2005 and CEC 2019 benchmark data sets have been used. A comparison has been performed with differential evolution with active archive (JADE), self-adaptive DE (SaDE), success history based DE (SHADE), LSHADE-SPACMA, extended GWO (GWO-E), jDE100, and others. The DHPN algorithm is also used to solve the image fusion problem for four fusion quality metrics, namely, edge-based similarity index ( ), sum of correlation difference (SCD), structural similarity index measure (SSIM), and artifact measure ( ). The average , , , and shows the best combination of results obtained by DHPN with respect to the existing algorithms such as DCH, CBF, GTF, JSR and others. Experimental and statistical Wilcoxon's and Friedman's tests show that the proposed DHPN algorithm performs significantly better in comparison to the other algorithms under test.

摘要

本文提出了一种名为DHPN的新型多混合算法,该算法利用了矮猫鼬算法(DMA)、蜜獾算法(HBA)、草原犬鼠优化器(PDO)、布谷鸟搜索(CS)、灰狼优化器(GWO)和裸鼹鼠算法(NMRA)的最佳已知特性。它采用迭代划分进行广泛探索,并纳入主要的参数增强措施以改进利用操作。为了应对局部最优问题,添加了一个使用CS和GWO的停滞阶段。分析了六个新的惯性权重算子以调整算法参数,并找到了这些参数的最佳组合。对DHPN在种群变异和高维情况下的适用性进行了分析。为了进行性能评估,使用了CEC 2005和CEC 2019基准数据集。与带有主动存档的差分进化(JADE)、自适应DE(SaDE)、基于成功历史的DE(SHADE)、LSHADE - SPACMA、扩展GWO(GWO - E)、jDE100等算法进行了比较。DHPN算法还用于解决图像融合问题,涉及四个融合质量指标,即基于边缘的相似性指数( )、相关差异之和(SCD)、结构相似性指数度量(SSIM)和伪像度量( )。平均 、 、 和 表明,相对于现有算法如DCH、CBF、GTF、JSR等,DHPN获得了最佳的结果组合。实验以及统计威尔科克森检验和弗里德曼检验表明,与其他被测算法相比,所提出的DHPN算法性能显著更优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc03/11178836/69af761fedc6/41598_2024_63746_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验