Suppr超能文献

基于 FEDCNN 的视网膜脱离性斜视检测。

A retinal detachment based strabismus detection through FEDCNN.

机构信息

College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China.

Artificial Intelligence and Data Analytics (AIDA) Lab, CCIS, Prince Sultan University, Riyadh, 11856, Saudi Arabia.

出版信息

Sci Rep. 2024 Oct 6;14(1):23255. doi: 10.1038/s41598-024-72919-6.

Abstract

Ocular strabismus, a common condition in the present generation is an absolute risk factor for amblyopia and blinding premorbid visual loss. Despite the availability of new optometry tools with eye-tracking data, the issues persist in attaining accuracy and reliability in diagnosing strabismus. These two concerns are specifically accommodated in this study by the proposed novel approach that involves CNNs with eye-tracking datasets from subjects. The presented work aims to improve the accuracy of diagnostics in ophthalmology utilizing the integration of the further proposed algorithms into an automatic strabismus detection system. For this purpose, the proposed FedCNN model combines the CNN with eXtreme Gradient Boosting (XGBoost) and uses the Gaze deviation (GaDe) images to capture dynamic eye movements. This method tries to make the feature extraction as accurate as possible in its best working state to enhance the diagnosis precision. The model proves to be accurate, reaching 95.2%, which is even more prominent because of the more or less detailed connection layer of the CNN, which is used for the selection of features designated for such tasks of strabismus recognition. The presented method has the potential of shifting the approach to diagnosing diseases of the eyes in more or less half of the patients.

摘要

斜视,这是当代一种常见病症,是弱视和致盲性预发病变视力丧失的绝对风险因素。尽管现在有新的结合眼动追踪数据的视光学工具,但在诊断斜视方面,准确性和可靠性问题仍然存在。本研究通过涉及眼动追踪数据的 CNN 提出了一种新方法,专门解决了这两个问题。本研究旨在通过将进一步提出的算法集成到自动斜视检测系统中,提高眼科诊断的准确性。为此,提出的 FedCNN 模型将 CNN 与极端梯度提升(XGBoost)相结合,并使用注视偏差(GaDe)图像来捕捉动态眼球运动。该方法试图在最佳工作状态下尽可能准确地进行特征提取,以提高诊断精度。该模型的准确率达到 95.2%,这更为显著,因为 CNN 的连接层或多或少地详细,用于选择专门用于斜视识别等任务的特征。该方法有可能将诊断眼病的方法应用于一半以上的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e993/11456587/ddbd48591ac7/41598_2024_72919_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验