Suppr超能文献

在海马 CA1 中,不同的神经元群体有助于痕迹条件反射和消退学习。

Distinct neuronal populations contribute to trace conditioning and extinction learning in the hippocampal CA1.

机构信息

Department of Biomedical Engineering, Boston University, Boston, United States.

Department of Electrical and Computer Engineering, Boston University, Boston, United States.

出版信息

Elife. 2021 Apr 12;10:e56491. doi: 10.7554/eLife.56491.

Abstract

Trace conditioning and extinction learning depend on the hippocampus, but it remains unclear how neural activity in the hippocampus is modulated during these two different behavioral processes. To explore this question, we performed calcium imaging from a large number of individual CA1 neurons during both trace eye-blink conditioning and subsequent extinction learning in mice. Our findings reveal that distinct populations of CA1 cells contribute to trace conditioned learning versus extinction learning, as learning emerges. Furthermore, we examined network connectivity by calculating co-activity between CA1 neuron pairs and found that CA1 network connectivity patterns also differ between conditioning and extinction, even though the overall connectivity density remains constant. Together, our results demonstrate that distinct populations of hippocampal CA1 neurons, forming different sub-networks with unique connectivity patterns, encode different aspects of learning.

摘要

痕迹条件反射和消退学习依赖于海马体,但目前尚不清楚海马体中的神经活动在这两种不同的行为过程中是如何被调节的。为了探索这个问题,我们在小鼠进行痕迹眼跳条件反射和随后的消退学习过程中,对大量单个 CA1 神经元进行钙成像。我们的研究结果表明,在学习出现时,不同的 CA1 细胞群体有助于痕迹条件反射学习和消退学习。此外,我们通过计算 CA1 神经元对之间的共活动来检查网络连接性,发现即使整体连接密度保持不变,CA1 网络连接模式在条件反射和消退之间也存在差异。总之,我们的结果表明,海马体 CA1 神经元的不同群体形成具有独特连接模式的不同子网络,编码学习的不同方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db97/8064758/105bf9f39e4c/elife-56491-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验