Suppr超能文献

用于聚合物复合材料的各向异性石墨烯框架的多尺度结构调制实现高效热能管理

Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management.

作者信息

Dai Wen, Lv Le, Ma Tengfei, Wang Xiangze, Ying Junfeng, Yan Qingwei, Tan Xue, Gao Jingyao, Xue Chen, Yu Jinhong, Yao Yagang, Wei Qiuping, Sun Rong, Wang Yan, Liu Te-Huan, Chen Tao, Xiang Rong, Jiang Nan, Xue Qunji, Wong Ching-Ping, Maruyama Shigeo, Lin Cheng-Te

机构信息

Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering (NIMTE) Chinese Academy of Sciences Ningbo 315201 P. R. China.

Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China.

出版信息

Adv Sci (Weinh). 2021 Feb 19;8(7):2003734. doi: 10.1002/advs.202003734. eCollection 2021 Apr.

Abstract

Graphene is usually embedded into polymer matrices for the development of thermally conductive composites, preferably forming an interconnected and anisotropic framework. Currently, the directional self-assembly of exfoliated graphene sheets is demonstrated to be the most effective way to synthesize anisotropic graphene frameworks. However, achieving a thermal conductivity enhancement (TCE) over 1500% with per 1 vol% graphene content in polymer matrices remains challenging, due to the high junction thermal resistance between the adjacent graphene sheets within the self-assembled graphene framework. Here, a multiscale structural modulation strategy for obtaining highly ordered structure of graphene framework and simultaneously reducing the junction thermal resistance is demonstrated. The resultant anisotropic framework contributes to the polymer composites with a record-high thermal conductivity of 56.8-62.4 W m K at the graphene loading of ≈13.3 vol%, giving an ultrahigh TCE per 1 vol% graphene over 2400%. Furthermore, thermal energy management applications of the composites as phase change materials for solar-thermal energy conversion and as thermal interface materials for electronic device cooling are demonstrated. The finding provides valuable guidance for designing high-performance thermally conductive composites and raises their possibility for practical use in thermal energy storage and thermal management of electronics.

摘要

石墨烯通常被嵌入聚合物基体中以开发导热复合材料,最好形成相互连接的各向异性框架。目前,已证明剥离的石墨烯片的定向自组装是合成各向异性石墨烯框架的最有效方法。然而,由于自组装石墨烯框架内相邻石墨烯片之间的高界面热阻,在聚合物基体中每1体积%的石墨烯含量实现超过1500%的热导率增强(TCE)仍然具有挑战性。在此,展示了一种多尺度结构调制策略,用于获得高度有序的石墨烯框架结构并同时降低界面热阻。所得的各向异性框架使聚合物复合材料在石墨烯负载量约为13.3体积%时具有创纪录的高导热率56.8 - 62.4 W m⁻¹ K⁻¹,每1体积%石墨烯的超高TCE超过2400%。此外,还展示了该复合材料作为太阳能 - 热能转换的相变材料以及作为电子设备冷却的热界面材料的热能管理应用。这一发现为设计高性能导热复合材料提供了有价值的指导,并提高了它们在热能存储和电子设备热管理中实际应用的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52c3/8025029/71935a8120da/ADVS-8-2003734-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验