Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
Nat Commun. 2021 Apr 15;12(1):2254. doi: 10.1038/s41467-021-22422-7.
One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes.
自下而上的合成生物学面临的一大挑战是开发细胞分裂的最小机械装置。大规模隔室(如巨大的单层囊泡 (GUV))的机械转化需要主动元件的特定几何协调,其大小比分子尺度大几个数量级。在所有细胞骨架结构中,大规模的肌动球蛋白环似乎是最有希望完成这项任务的细胞元件。在这里,我们采用了先进的封装方法来研究 GUV 中的束状肌动蛋白丝,并将我们的结果与理论模型进行比较。通过改变几个关键参数,可以区分肌动蛋白聚合以类似于活细胞中各种类型的网络。重要的是,我们发现膜结合对于在球形囊泡中形成单个肌动蛋白环的稳健凝聚至关重要,这是理论考虑的预测。在 ATP 驱动的肌球蛋白马达产生力后,这些环形肌动蛋白结构收缩并局部收缩囊泡,形成类似沟的变形。另一方面,皮质样肌动蛋白网络被证明可以诱导和稳定从球形形状的变形。