Nishikawa Kei, Shinoda Keisuke
Rechargeable Battery Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
Electrochemical Energy Device Team, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
J Phys Chem Lett. 2021 Apr 29;12(16):3922-3927. doi: 10.1021/acs.jpclett.1c00717. Epub 2021 Apr 16.
The Li metal anode is a promising key component for next-generation high-energy-density batteries. Understanding the charge/discharge mechanism of Li metal is therefore necessary for the effective utilization of Li metal anodes in commercial batteries. In this study, scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS) was conducted to reveal the chemical state of the Li metal anode surface. Cryogenic techniques and ultramicroelectrodes (UMEs) enabled the observation of electrodeposited Li metal on the nanometer scale. The chemical compositions of several surface layers were revealed by cryo-STEM-EELS analysis, and these measurements gave crucial information regarding the surface layer of the electrodeposited Li metal.
锂金属负极是下一代高能量密度电池中一个很有前景的关键组件。因此,了解锂金属的充放电机制对于在商用电池中有效利用锂金属负极是必要的。在本研究中,进行了扫描透射电子显微镜(STEM)与电子能量损失谱(EELS)相结合的实验,以揭示锂金属负极表面的化学状态。低温技术和超微电极(UMEs)使得能够在纳米尺度上观察电沉积的锂金属。通过低温STEM-EELS分析揭示了几个表面层的化学成分,这些测量提供了有关电沉积锂金属表面层的关键信息。