Mistry Aashutosh, Franco Alejandro A, Cooper Samuel J, Roberts Scott A, Viswanathan Venkatasubramanian
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Laboratorie de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de I'Energie, 15 rue Baudelocque, 80039 Amiens Cedex, France.
ACS Energy Lett. 2021 Apr 9;6(4):1422-1431. doi: 10.1021/acsenergylett.1c00194. Epub 2021 Mar 23.
Electrochemical systems function via interconversion of electric charge and chemical species and represent promising technologies for our cleaner, more sustainable future. However, their development time is fundamentally limited by our ability to identify new materials and understand their electrochemical response. To shorten this time frame, we need to switch from the approach of finding useful materials to a more selective process by leveraging model predictions. Machine learning (ML) offers data-driven predictions and can be helpful. Herein we ask if ML can the development cycle from decades to a few years. We outline the necessary characteristics of such ML implementations. Instead of enumerating various ML algorithms, we discuss scientific questions about the electrochemical systems to which ML can contribute.
电化学系统通过电荷与化学物质的相互转换发挥作用,是实现更清洁、更可持续未来的有前景的技术。然而,它们的开发时间从根本上受到我们识别新材料并理解其电化学响应能力的限制。为了缩短这个时间框架,我们需要从寻找有用材料的方法转向通过利用模型预测进行更具选择性的过程。机器学习(ML)提供数据驱动的预测,可能会有所帮助。在此,我们探讨机器学习能否将开发周期从数十年缩短至数年。我们概述了此类机器学习实现的必要特征。我们不是列举各种机器学习算法,而是讨论机器学习可以为之做出贡献的关于电化学系统的科学问题。