Wu Lili, Gao Chenyin, Yang Shu, Reich Brian J, Rappold Ana G
Department of Statistics, North Carolina State University, 2311 Stinson Dr. Raleigh, Raleigh, NC 27695, USA.
Environmental Public Health Division, Environmental Protection Agency, Chapel Hill, NC, USA.
J R Stat Soc Ser C Appl Stat. 2024 Jul 16;73(5):1242-1261. doi: 10.1093/jrsssc/qlae034. eCollection 2024 Nov.
Wildland fire smoke exposures are an increasing threat to public health, highlighting the need for studying the effects of protective behaviours on reducing health outcomes. Emerging smartphone applications provide unprecedented opportunities to deliver health risk communication messages to a large number of individuals in real-time and subsequently study the effectiveness, but also pose methodological challenges. Smoke Sense, a citizen science project, provides an interactive smartphone app platform for participants to engage with information about air quality, and ways to record their own health symptoms and actions taken to reduce smoke exposure. We propose a doubly robust estimator of the structural nested mean model that accounts for spatially and time-varying effects via a local estimating equation approach with geographical kernel weighting. Moreover, our analytical framework also handles informative missingness by inverse probability weighting of estimating functions. We evaluate the method using extensive simulation studies and apply it to Smoke Sense data to increase the knowledge base about the relationship between health preventive measures and health-related outcomes. Our results show that the protective behaviours' effects vary over space and time and find that protective behaviours have more significant effects on reducing health symptoms in the Southwest than the Northwest region of the U.S.
野火烟雾暴露对公众健康构成的威胁日益增加,这凸显了研究保护行为对降低健康影响的必要性。新兴的智能手机应用程序为向大量人群实时传递健康风险信息并随后研究其有效性提供了前所未有的机会,但也带来了方法上的挑战。公民科学项目“烟雾感知”提供了一个交互式智能手机应用程序平台,让参与者了解空气质量信息,以及记录自己健康症状和为减少烟雾暴露所采取行动的方法。我们提出了一种结构嵌套均值模型的双重稳健估计器,该估计器通过具有地理核加权的局部估计方程方法来考虑空间和时间变化的影响。此外,我们的分析框架还通过估计函数的逆概率加权来处理信息性缺失。我们使用广泛的模拟研究对该方法进行评估,并将其应用于“烟雾感知”数据,以增加关于健康预防措施与健康相关结果之间关系的知识库。我们的结果表明,保护行为的效果随空间和时间而变化,并发现保护行为在美国西南部比西北部地区对减少健康症状有更显著的影响。