Suppr超能文献

揭示美国 COVID-19 大流行的空间转移模式。

Revealing the spatial shifting pattern of COVID-19 pandemic in the United States.

机构信息

Department of Geography, Environment and Society, University of Minnesota, Twin Cities, USA.

Beijing Key Lab of Spatial Information Integration and Its Applications, Peking University, Beijing, China.

出版信息

Sci Rep. 2021 Apr 19;11(1):8396. doi: 10.1038/s41598-021-87902-8.

Abstract

We describe the use of network modeling to capture the shifting spatiotemporal nature of the COVID-19 pandemic. The most common approach to tracking COVID-19 cases over time and space is to examine a series of maps that provide snapshots of the pandemic. A series of snapshots can convey the spatial nature of cases but often rely on subjective interpretation to assess how the pandemic is shifting in severity through time and space. We present a novel application of network optimization to a standard series of snapshots to better reveal how the spatial centres of the pandemic shifted spatially over time in the mainland United States under a mix of interventions. We find a global spatial shifting pattern with stable pandemic centres and both local and long-range interactions. Metrics derived from the daily nature of spatial shifts are introduced to help evaluate the pandemic situation at regional scales. We also highlight the value of reviewing pandemics through local spatial shifts to uncover dynamic relationships among and within regions, such as spillover and concentration among states. This new way of examining the COVID-19 pandemic in terms of network-based spatial shifts offers new story lines in understanding how the pandemic spread in geography.

摘要

我们描述了使用网络建模来捕捉 COVID-19 大流行不断变化的时空性质。跟踪 COVID-19 病例随时间和空间的变化的最常见方法是检查一系列提供大流行快照的地图。一系列快照可以传达病例的空间性质,但通常依赖于主观解释来评估大流行在时间和空间上的严重程度如何变化。我们将网络优化的新应用于标准快照系列,以更好地揭示在混合干预措施下,美国大陆 COVID-19 的空间中心如何随时间在空间上转移。我们发现了一个具有稳定大流行中心以及局部和远程相互作用的全球空间转移模式。引入了从空间转移的每日性质派生的指标,以帮助评估区域尺度上的大流行情况。我们还强调了通过局部空间转移来审查大流行病以揭示地区之间和内部的动态关系(如州之间的溢出和集中)的价值。这种基于网络的空间转移来检查 COVID-19 大流行的新方法提供了理解大流行病在地理上传播的新线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2879/8055907/4937f32417bd/41598_2021_87902_Fig1_HTML.jpg

相似文献

1
Revealing the spatial shifting pattern of COVID-19 pandemic in the United States.
Sci Rep. 2021 Apr 19;11(1):8396. doi: 10.1038/s41598-021-87902-8.
3
Superspreading of SARS-CoV-2 in the USA.
PLoS One. 2021 Mar 25;16(3):e0248808. doi: 10.1371/journal.pone.0248808. eCollection 2021.
4
A kernel-modulated SIR model for Covid-19 contagious spread from county to continent.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2023321118.
5
A comparison of prospective space-time scan statistics and spatiotemporal event sequence based clustering for COVID-19 surveillance.
PLoS One. 2021 Jun 10;16(6):e0252990. doi: 10.1371/journal.pone.0252990. eCollection 2021.
7
Spatiotemporal evolution of COVID-19 in Portugal's Mainland with self-organizing maps.
Int J Health Geogr. 2023 Jan 29;22(1):4. doi: 10.1186/s12942-022-00322-3.
8
Spatiotemporal Analysis of COVID-19 Incidence Data.
Viruses. 2021 Mar 11;13(3):463. doi: 10.3390/v13030463.
9
Spatial spread of COVID-19 during the early pandemic phase in Italy.
BMC Infect Dis. 2024 Apr 29;24(1):450. doi: 10.1186/s12879-024-09343-8.
10
Spatio-temporal distribution characteristics of COVID-19 in China: a city-level modeling study.
BMC Infect Dis. 2021 Aug 14;21(1):816. doi: 10.1186/s12879-021-06515-8.

引用本文的文献

2
Oscillating spatiotemporal patterns of COVID-19 in the United States.
Sci Rep. 2024 Sep 16;14(1):21562. doi: 10.1038/s41598-024-72517-6.
4
Mapping COVID-19's potential infection risk based on land use characteristics: A case study of commercial activities in two Egyptian cities.
Heliyon. 2024 Jan 19;10(2):e24702. doi: 10.1016/j.heliyon.2024.e24702. eCollection 2024 Jan 30.
5
Spatiotemporal Patterns of the Omicron Wave of COVID-19 in the United States.
Trop Med Infect Dis. 2023 Jun 30;8(7):349. doi: 10.3390/tropicalmed8070349.
6
Differential associations of mask mandates on COVID-19 infection and mortality by community social vulnerability.
Am J Infect Control. 2024 Feb;52(2):152-158. doi: 10.1016/j.ajic.2023.06.011. Epub 2023 Jun 19.
7
The Most Vulnerable Hispanic Immigrants in New York City: Structural Racism and Gendered Differences in COVID-19 Deaths.
Int J Environ Res Public Health. 2023 May 16;20(10):5838. doi: 10.3390/ijerph20105838.
8
County-level societal predictors of COVID-19 cases and deaths changed through time in the United States: A longitudinal ecological study.
PLOS Glob Public Health. 2022 Nov 18;2(11):e0001282. doi: 10.1371/journal.pgph.0001282. eCollection 2022.
9
Fine-scale variation in the effect of national border on COVID-19 spread: A case study of the Saxon-Czech border region.
Spat Spatiotemporal Epidemiol. 2023 Feb;44:100560. doi: 10.1016/j.sste.2022.100560. Epub 2022 Dec 11.

本文引用的文献

1
COVID-19 predictability in the United States using Google Trends time series.
Sci Rep. 2020 Nov 26;10(1):20693. doi: 10.1038/s41598-020-77275-9.
2
Multiscale dynamic human mobility flow dataset in the U.S. during the COVID-19 epidemic.
Sci Data. 2020 Nov 12;7(1):390. doi: 10.1038/s41597-020-00734-5.
3
Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections.
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27087-27089. doi: 10.1073/pnas.2010836117. Epub 2020 Oct 15.
5
Changing travel patterns in China during the early stages of the COVID-19 pandemic.
Nat Commun. 2020 Oct 6;11(1):5012. doi: 10.1038/s41467-020-18783-0.
8
Local lockdowns outperform global lockdown on the far side of the COVID-19 epidemic curve.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24575-24580. doi: 10.1073/pnas.2014385117. Epub 2020 Sep 4.
10
Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic.
Nat Commun. 2020 Aug 13;11(1):4049. doi: 10.1038/s41467-020-17922-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验