Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
Free Radic Res. 2021 Jun;55(6):671-687. doi: 10.1080/10715762.2021.1914335. Epub 2021 Apr 20.
Nanotechnology is a rapidly developing technology in the twenty-first century. Nanomaterials are extensively used in numerous industries including cosmetics, food, medicines, industries, agriculture, etc. Along with its wide application toxicity is also reported from studies of various model organisms including . The toxicity reflects cytotoxicity, genotoxicity, and teratogenicity. The current study correlates the toxicity as a consequence of reactive oxygen species (ROS) generated owing to the presence of nanoparticles with the living cell. ROS mainly includes hydroxyl ions, peroxide ions, superoxide anions, singlet oxygen, and hypochlorous acids. An elevated level of ROS can damage the cells by various means. To protect the body from excess ROS, living cells possess a set of antioxidant enzymes which includes peroxidase, glutathione peroxidase, and catalase. If the antioxidant enzymes cannot nullify the elevated ROS level than DNA damage, cell damage, cytotoxicity, apoptosis, and uncontrolled cell regulations occur resulting in abnormal physiological and genotoxic conditions. Herewith, we are reporting various morphological and physiological defects caused after nanoparticle treatment as a function of redox imbalance.
纳米技术是 21 世纪发展迅速的技术。纳米材料广泛应用于众多行业,包括化妆品、食品、医药、工业、农业等。随着其广泛应用,毒性也已在包括在内的各种模式生物的研究中得到报道。毒性反映细胞毒性、遗传毒性和致畸性。本研究将毒性与由于纳米颗粒存在而产生的活性氧物质(ROS)与活细胞联系起来。ROS 主要包括羟基离子、过氧离子、超氧阴离子、单线态氧和次氯酸。ROS 水平升高会通过多种方式损害细胞。为了防止身体受到过多的 ROS 伤害,活细胞拥有一套抗氧化酶,包括过氧化物酶、谷胱甘肽过氧化物酶和过氧化氢酶。如果抗氧化酶不能消除升高的 ROS 水平,那么 DNA 损伤、细胞损伤、细胞毒性、细胞凋亡和不受控制的细胞调节就会发生,导致异常的生理和遗传毒性状况。在此,我们报告了在纳米颗粒处理后,由于氧化还原失衡而引起的各种形态和生理缺陷。