Angevine Christopher E, Robertson Joseph W F, Dass Amala, Reiner Joseph E
Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.
Biophysics Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Sci Adv. 2021 Apr 21;7(17). doi: 10.1126/sciadv.abf5462. Print 2021 Apr.
Single-molecule approaches for probing the free energy of confinement for polymers in a nanopore environment are critical for the development of nanopore biosensors. We developed a laser-based nanopore heating approach to monitor the free energy profiles of such a single-molecule sensor. Using this approach, we measure the free energy profiles of two distinct polymers, polyethylene glycol and water-soluble peptides, as they interact with the nanopore sensor. Polyethylene glycol demonstrates a retention mechanism dominated by entropy with little sign of interaction with the pore, while peptides show an enthalpic mechanism, which can be attributed to physisorption to the nanopore (e.g., hydrogen bonding). To manipulate the energetics, we introduced thiolate-capped gold clusters [Au(SG)] into the pore, which increases the charge and leads to additional electrostatic interactions that help dissect the contribution that enthalpy and entropy make in this modified environment. These observations provide a benchmark for optimization of single-molecule nanopore sensors.
用于探测纳米孔环境中聚合物受限自由能的单分子方法对于纳米孔生物传感器的发展至关重要。我们开发了一种基于激光的纳米孔加热方法来监测这种单分子传感器的自由能分布。使用这种方法,我们测量了两种不同的聚合物(聚乙二醇和水溶性肽)与纳米孔传感器相互作用时的自由能分布。聚乙二醇表现出以熵为主导的保留机制,几乎没有与孔相互作用的迹象,而肽则表现出焓机制,这可归因于对纳米孔的物理吸附(例如氢键)。为了操纵能量学,我们将硫醇盐封端的金簇[Au(SG)]引入孔中,这增加了电荷并导致额外的静电相互作用,有助于剖析焓和熵在这种改性环境中的贡献。这些观察结果为单分子纳米孔传感器的优化提供了基准。