Suppr超能文献

SARS-CoV-2 刺突蛋白的比较系统发育分析——对病毒溢出的可能影响。

Comparative phylogenetic analysis of SARS-CoV-2 spike protein-possibility effect on virus spillover.

机构信息

Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran.

Queensland Biosciences Precinct, The University of Queensland, St Lucia 4072, Queensland, Australia.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab144.

Abstract

Coronavirus disease 2019 has developed into a dramatic pandemic with tremendous global impact. The receptor-binding motif (RBM) region of the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to host angiotensin-converting enzyme 2 (ACE2) receptors for infection. As ACE2 receptors are highly conserved within vertebrate species, SARS-CoV-2 can infect significant animal species as well as human populations. An analysis of SARS-CoV-2 genotypes isolated from human and significant animal species was conducted to compare and identify mutation and adaptation patterns across different animal species. The phylogenetic data revealed seven distinct phylogenetic clades with no significant relationship between the clades and geographical locations. A high rate of variation within SARS-CoV-2 mink isolates implies that mink populations were infected before human populations. Positions of most single-nucleotide polymorphisms (SNPs) within the spike (S) protein of SARS-CoV-2 genotypes from the different hosts are mostly accumulated in the RBM region and highlight the pronounced accumulation of variants with mutations in the RBM region in comparison with other variants. These SNPs play a crucial role in viral transmission and pathogenicity and are keys in identifying other animal species as potential intermediate hosts of SARS-CoV-2. The possible roles in the emergence of new viral strains and the possible implications of these changes, in compromising vaccine effectiveness, deserve urgent considerations.

摘要

新型冠状病毒病已发展成具有巨大全球影响的重大疫情。致病病毒,即严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)的受体结合基序(RBM)区域与宿主血管紧张素转化酶 2(ACE2)受体结合以进行感染。由于 ACE2 受体在脊椎动物物种中高度保守,SARS-CoV-2 可感染重要的动物物种以及人类群体。对从人类和重要动物物种中分离出的 SARS-CoV-2 基因型进行分析,以比较和鉴定不同动物物种中的突变和适应模式。系统进化数据分析揭示了七个不同的系统进化枝,这些枝与地理位置之间没有明显关系。SARS-CoV-2 水貂分离株中存在高变异率,这意味着水貂种群在人类种群之前就已被感染。来自不同宿主的 SARS-CoV-2 基因型刺突(S)蛋白内大多数单核苷酸多态性(SNP)的位置主要集中在 RBM 区域,并突出显示与其他变体相比,RBM 区域中突变变体的明显积累。这些 SNP 在病毒传播和致病性方面发挥着关键作用,是识别其他动物物种作为 SARS-CoV-2 潜在中间宿主的关键。这些变化在新病毒株出现中的可能作用以及对疫苗效力的可能影响值得紧急考虑。

相似文献

3
Molecular Basis of Mink ACE2 Binding to SARS-CoV-2 and Its Mink-Derived Variants.
J Virol. 2022 Sep 14;96(17):e0081422. doi: 10.1128/jvi.00814-22. Epub 2022 Aug 24.
6
Highly conserved binding region of ACE2 as a receptor for SARS-CoV-2 between humans and mammals.
Vet Q. 2020 Dec;40(1):243-249. doi: 10.1080/01652176.2020.1823522.
7
Molecular evolution and phylogenetic analysis of SARS-CoV-2 and hosts ACE2 protein suggest Malayan pangolin as intermediary host.
Braz J Microbiol. 2020 Dec;51(4):1593-1599. doi: 10.1007/s42770-020-00321-1. Epub 2020 Jun 26.
9
Evolutionary analysis of SARS-CoV-2 spike protein for its different clades.
J Med Virol. 2021 May;93(5):3000-3006. doi: 10.1002/jmv.26834. Epub 2021 Feb 9.
10
Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants.
Elife. 2020 Oct 28;9:e61312. doi: 10.7554/eLife.61312.

引用本文的文献

1
Strategy to develop broadly effective multivalent COVID-19 vaccines against emerging variants based on Ad5/35 platform.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2313681121. doi: 10.1073/pnas.2313681121. Epub 2024 Feb 26.
3
An integrated understanding of the evolutionary and structural features of the SARS-CoV-2 spike receptor binding domain (RBD).
Int J Biol Macromol. 2022 Sep 30;217:492-505. doi: 10.1016/j.ijbiomac.2022.07.022. Epub 2022 Jul 13.
5
Highlight of potential impact of new viral genotypes of SARS-CoV-2 on vaccines and anti-viral therapeutics.
Gene Rep. 2022 Mar;26:101537. doi: 10.1016/j.genrep.2022.101537. Epub 2022 Feb 2.
6
Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic.
Comput Biol Chem. 2021 Dec;95:107599. doi: 10.1016/j.compbiolchem.2021.107599. Epub 2021 Nov 2.
7
Outbreaks of SARS-CoV-2 in naturally infected mink farms: Impact, transmission dynamics, genetic patterns, and environmental contamination.
PLoS Pathog. 2021 Sep 7;17(9):e1009883. doi: 10.1371/journal.ppat.1009883. eCollection 2021 Sep.
8
Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains.
mBio. 2021 Aug 31;12(4):e0159021. doi: 10.1128/mBio.01590-21. Epub 2021 Aug 3.

本文引用的文献

1
Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity.
Cell. 2021 Mar 4;184(5):1171-1187.e20. doi: 10.1016/j.cell.2021.01.037. Epub 2021 Jan 28.
2
Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape.
Science. 2021 Mar 12;371(6534):1139-1142. doi: 10.1126/science.abf6950. Epub 2021 Feb 3.
3
Possible host-adaptation of SARS-CoV-2 due to improved ACE2 receptor binding in mink.
Virus Evol. 2021 Jan 4;7(1):veaa094. doi: 10.1093/ve/veaa094. eCollection 2021 Jan.
4
Genetic Variants of SARS-CoV-2-What Do They Mean?
JAMA. 2021 Feb 9;325(6):529-531. doi: 10.1001/jama.2020.27124.
5
Development of vaccines and antivirals for combating viral pandemics.
Nat Biomed Eng. 2020 Dec;4(12):1128-1133. doi: 10.1038/s41551-020-00658-w.
6
No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2.
Nat Commun. 2020 Nov 25;11(1):5986. doi: 10.1038/s41467-020-19818-2.
7
Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans.
Science. 2021 Jan 8;371(6525):172-177. doi: 10.1126/science.abe5901. Epub 2020 Nov 10.
10
Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant.
Cell. 2020 Oct 29;183(3):739-751.e8. doi: 10.1016/j.cell.2020.09.032. Epub 2020 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验