Suppr超能文献

时空人口动态的数学建模及其在传染病传播中的应用。

Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading.

机构信息

Zuse Institute Berlin, 14195 Berlin, Germany.

Zuse Institute Berlin, 14195 Berlin, Germany; Freie Universität Berlin, Institut für Mathematik und Informatik, 14195 Berlin, Germany.

出版信息

Math Biosci. 2021 Jun;336:108619. doi: 10.1016/j.mbs.2021.108619. Epub 2021 Apr 19.

Abstract

Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios.

摘要

基于主体的模型(ABM)是一种用于模拟时空人口动态的有用工具,其中可以在模型描述中包含许多细节。然而,它们的计算成本非常高,对于随机 ABM 来说,需要进行大量的个体模拟来对感兴趣的数量进行采样。特别是,大量的主体使得采样变得不可行。将模型简化为复合种群模型可以显著提高计算效率,同时保留重要的动态特性。基于对时空 ABM 的精确数学描述,我们提出了两种不同的复合种群方法(随机和分段确定性),并在该框架内讨论了不同模型之间的近似步骤。特别是,我们展示了随机复合种群模型如何从对基本 ABM 的 Galerkin 投影到有限维假设空间中得出。最后,我们利用我们的建模框架为 COVID-19 的传播提供了一个概念模型,可以扩展到实际场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dfa/8054535/42cdc8987299/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验