Suppr超能文献

基于人工智能的膀胱癌常规组织学中 FGFR3 突变状态的直接检测:是否可能用于分子检测的初步筛选?

Artificial Intelligence-based Detection of FGFR3 Mutational Status Directly from Routine Histology in Bladder Cancer: A Possible Preselection for Molecular Testing?

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany.

出版信息

Eur Urol Focus. 2022 Mar;8(2):472-479. doi: 10.1016/j.euf.2021.04.007. Epub 2021 Apr 22.

Abstract

BACKGROUND

Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available.

OBJECTIVE

To determine whether an artificial intelligence system is able to predict mutations of the FGFR3 gene directly from routine histology slides of bladder cancer.

DESIGN, SETTING, AND PARTICIPANTS: We trained a deep learning network to detect FGFR3 mutations on digitized slides of muscle-invasive bladder cancers stained with hematoxylin and eosin from the Cancer Genome Atlas (TCGA) cohort (n = 327) and validated the algorithm on the "Aachen" cohort (n = 182; n = 121 pT2-4, n = 34 stroma-invasive pT1, and n = 27 noninvasive pTa tumors).

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS

The primary endpoint was the area under the receiver operating curve (AUROC) for mutation detection. Performance of the deep learning system was compared with visual scoring by an uropathologist.

RESULTS AND LIMITATIONS

In the TCGA cohort, FGFR3 mutations were detected with an AUROC of 0.701 (p < 0.0001). In the Aachen cohort, FGFR3 mutants were found with an AUROC of 0.725 (p < 0.0001). When trained on TCGA, the network generalized to the Aachen cohort, and detected FGFR3 mutants with an AUROC of 0.625 (p = 0.0112). A subgroup analysis and histological evaluation found highest accuracy in papillary growth, luminal gene expression subtypes, females, and American Joint Committee on Cancer (AJCC) stage II tumors. In a head-to-head comparison, the deep learning system outperformed the uropathologist in detecting FGFR3 mutants.

CONCLUSIONS

Our computer-based artificial intelligence system was able to detect genetic alterations of the FGFR3 gene of bladder cancer patients directly from histological slides. In the future, this system could be used to preselect patients for further molecular testing. However, analyses of larger, multicenter, muscle-invasive bladder cancer cohorts are now needed in order to validate and extend our findings.

PATIENT SUMMARY

In this report, a computer-based artificial intelligence (AI) system was applied to histological slides to predict genetic alterations of the FGFR3 gene in bladder cancer. We found that the AI system was able to find the alteration with high accuracy. In the future, this system could be used to preselect patients for further molecular testing.

摘要

背景

成纤维细胞生长因子受体(FGFR)抑制剂治疗已成为膀胱癌临床批准的首个靶向治疗方法。然而,它需要对每个患者进行先前的分子检测,这既昂贵又不是普遍可用的。

目的

确定人工智能系统是否能够直接从膀胱癌的常规组织学切片中预测 FGFR3 基因的突变。

设计、设置和参与者:我们训练了一个深度学习网络,以检测癌症基因组图谱(TCGA)队列中经苏木精和曙红染色的肌肉浸润性膀胱癌的数字化切片中的 FGFR3 突变(n = 327),并在“亚琛”队列(n = 182;n = 121 pT2-4,n = 34 基质浸润性 pT1,n = 27 非浸润性 pTa 肿瘤)上验证了该算法。

结局测量和统计分析

主要终点是突变检测的接收器操作曲线(AUROC)下面积。深度学习系统的性能与泌尿科医师的视觉评分进行了比较。

结果和局限性

在 TCGA 队列中,FGFR3 突变的 AUROC 为 0.701(p < 0.0001)。在亚琛队列中,FGFR3 突变体的 AUROC 为 0.725(p < 0.0001)。当在 TCGA 上进行训练时,该网络推广到亚琛队列,并以 AUROC 为 0.625(p = 0.0112)检测到 FGFR3 突变体。亚组分析和组织学评估发现,在乳头状生长、管腔基因表达亚型、女性和美国癌症联合委员会(AJCC)II 期肿瘤中具有最高的准确性。在直接比较中,深度学习系统在检测 FGFR3 突变体方面优于泌尿科医师。

结论

我们基于计算机的人工智能系统能够直接从组织学切片中检测膀胱癌患者 FGFR3 基因的遗传改变。将来,该系统可用于预先选择进行进一步分子检测的患者。然而,现在需要对更大的、多中心的肌肉浸润性膀胱癌队列进行分析,以验证和扩展我们的发现。

患者总结

在本报告中,基于计算机的人工智能(AI)系统被应用于组织学切片,以预测膀胱癌中 FGFR3 基因的遗传改变。我们发现 AI 系统能够以高精度找到这种改变。将来,该系统可用于预先选择患者进行进一步的分子检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验