Department of CSE, Malla Reddy Engineering College (Autonomous), Maisammaguda, Secunderabad, 500100, Telangana, India.
Department of CSE, Velagapudi Ramakrishna Siddhartha Engineering College (Deemed to be University), Kanuru, Vijayawada, 520007, Andhra Pradesh, India.
Sci Rep. 2024 Nov 1;14(1):26287. doi: 10.1038/s41598-024-74305-8.
The objective of this investigation was to improve the diagnosis of breast cancer by combining two significant datasets: the Wisconsin Breast Cancer Database and the DDSM Curated Breast Imaging Subset (CBIS-DDSM). The Wisconsin Breast Cancer Database provides a detailed examination of the characteristics of cell nuclei, including radius, texture, and concavity, for 569 patients, of which 212 had malignant tumors. In addition, the CBIS-DDSM dataset-a revised variant of the Digital Database for Screening Mammography (DDSM)-offers a standardized collection of 2,620 scanned film mammography studies, including cases that are normal, benign, or malignant and that include verified pathology data. To identify complex patterns and trait diagnoses of breast cancer, this investigation used a hybrid deep learning methodology that combines Convolutional Neural Networks (CNNs) with the stochastic gradients method. The Wisconsin Breast Cancer Database is used for CNN training, while the CBIS-DDSM dataset is used for fine-tuning to maximize adaptability across a variety of mammography investigations. Data integration, feature extraction, model development, and thorough performance evaluation are the main objectives. The diagnostic effectiveness of the algorithm was evaluated by the area under the Receiver Operating Characteristic Curve (AUC-ROC), sensitivity, specificity, and accuracy. The generalizability of the model will be validated by independent validation on additional datasets. This research provides an accurate, comprehensible, and therapeutically applicable breast cancer detection method that will advance the field. These predicted results might greatly increase early diagnosis, which could promote improvements in breast cancer research and eventually lead to improved patient outcomes.
本研究旨在通过结合两个重要数据集——威斯康星州乳腺癌数据库和 DDSM 精选乳腺成像子集(CBIS-DDSM),来提高乳腺癌的诊断水平。威斯康星州乳腺癌数据库详细研究了 569 名患者的细胞核特征,包括半径、纹理和凹度,其中 212 人患有恶性肿瘤。此外,CBIS-DDSM 数据集是数字筛查乳房 X 线摄影数据库(DDSM)的修订版本,它提供了一个标准化的 2620 份扫描胶片乳房 X 线摄影研究的集合,包括正常、良性或恶性的病例,并且包含经过验证的病理数据。为了识别乳腺癌的复杂模式和特征诊断,本研究采用了一种混合深度学习方法,将卷积神经网络(CNN)与随机梯度法相结合。威斯康星州乳腺癌数据库用于 CNN 训练,而 CBIS-DDSM 数据集则用于微调,以最大限度地提高对各种乳房 X 线摄影研究的适应性。数据集成、特征提取、模型开发和全面的性能评估是主要目标。通过接收者操作特征曲线(AUC-ROC)下面积、敏感性、特异性和准确性来评估算法的诊断效果。通过在其他数据集上进行独立验证,来验证模型的泛化能力。本研究提供了一种准确、可理解且具有治疗应用价值的乳腺癌检测方法,将推动该领域的发展。这些预测结果可能极大地提高早期诊断的准确性,从而促进乳腺癌研究的改进,并最终改善患者的治疗效果。