Institute for Auditory Neuroscience, University Medical Center Göttingen, 37075 Göttingen, Germany.
InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
Proc Natl Acad Sci U S A. 2021 May 4;118(18). doi: 10.1073/pnas.2014472118.
The cochlea of our auditory system is an intricate structure deeply embedded in the temporal bone. Compared with other sensory organs such as the eye, the cochlea has remained poorly accessible for investigation, for example, by imaging. This limitation also concerns the further development of technology for restoring hearing in the case of cochlear dysfunction, which requires quantitative information on spatial dimensions and the sensorineural status of the cochlea. Here, we employed X-ray phase-contrast tomography and light-sheet fluorescence microscopy and their combination for multiscale and multimodal imaging of cochlear morphology in species that serve as established animal models for auditory research. We provide a systematic reference for morphological parameters relevant for cochlear implant development for rodent and nonhuman primate models. We simulate the spread of light from the emitters of the optical implants within the reconstructed nonhuman primate cochlea, which indicates a spatially narrow optogenetic excitation of spiral ganglion neurons.
我们听觉系统的耳蜗是一个结构复杂的器官,深深地嵌入颞骨中。与眼睛等其他感觉器官相比,耳蜗的研究一直难以深入,例如通过成像进行研究。这种局限性也涉及到为恢复耳蜗功能障碍的听力而进一步开发技术,这需要有关耳蜗的空间尺寸和感觉神经状态的定量信息。在这里,我们采用 X 射线相衬断层摄影术和光片荧光显微镜及其组合,对作为听觉研究的既定动物模型的物种的耳蜗形态进行多尺度和多模态成像。我们为啮齿动物和非人类灵长类模型的耳蜗植入发展提供了与形态参数相关的系统参考。我们模拟了光学植入物发射器中的光在重建的非人类灵长类耳蜗内的传播,这表明螺旋神经节神经元的光遗传激发具有空间上的狭窄性。