Suppr超能文献

基于集成相似度的神经网络药物-药物相互作用预测

Drug-Drug Interaction Predicting by Neural Network Using Integrated Similarity.

机构信息

Department of Computer Sciences, Faculty of Mathematics, Shahid Beheshti University, G.C, Tehran, 1983969411, Iran.

School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 193955746, Iran.

出版信息

Sci Rep. 2019 Sep 20;9(1):13645. doi: 10.1038/s41598-019-50121-3.

Abstract

Drug-Drug Interaction (DDI) prediction is one of the most critical issues in drug development and health. Proposing appropriate computational methods for predicting unknown DDI with high precision is challenging. We proposed "NDD: Neural network-based method for drug-drug interaction prediction" for predicting unknown DDIs using various information about drugs. Multiple drug similarities based on drug substructure, target, side effect, off-label side effect, pathway, transporter, and indication data are calculated. At first, NDD uses a heuristic similarity selection process and then integrates the selected similarities with a nonlinear similarity fusion method to achieve high-level features. Afterward, it uses a neural network for interaction prediction. The similarity selection and similarity integration parts of NDD have been proposed in previous studies of other problems. Our novelty is to combine these parts with new neural network architecture and apply these approaches in the context of DDI prediction. We compared NDD with six machine learning classifiers and six state-of-the-art graph-based methods on three benchmark datasets. NDD achieved superior performance in cross-validation with AUPR ranging from 0.830 to 0.947, AUC from 0.954 to 0.994 and F-measure from 0.772 to 0.902. Moreover, cumulative evidence in case studies on numerous drug pairs, further confirm the ability of NDD to predict unknown DDIs. The evaluations corroborate that NDD is an efficient method for predicting unknown DDIs. The data and implementation of NDD are available at https://github.com/nrohani/NDD .

摘要

药物-药物相互作用(DDI)预测是药物开发和健康领域中最关键的问题之一。提出合适的计算方法来准确预测未知的 DDI 具有挑战性。我们提出了“NDD:基于神经网络的药物-药物相互作用预测方法”,用于使用药物的各种信息预测未知的 DDI。基于药物子结构、靶点、副作用、标签外副作用、途径、转运体和适应症数据计算了多种药物相似性。首先,NDD 使用启发式相似性选择过程,然后将选择的相似性与非线性相似性融合方法集成,以实现高级特征。之后,它使用神经网络进行相互作用预测。NDD 的相似性选择和相似性集成部分已经在其他问题的先前研究中提出。我们的新颖之处在于将这些部分与新的神经网络架构结合,并将这些方法应用于 DDI 预测的背景下。我们在三个基准数据集上比较了 NDD 与六个机器学习分类器和六个最先进的基于图的方法。在交叉验证中,NDD 的 AUPR 范围从 0.830 到 0.947,AUC 从 0.954 到 0.994,F-measure 从 0.772 到 0.902,性能均优于其他方法。此外,在对大量药物对的案例研究中累积的证据进一步证实了 NDD 预测未知 DDI 的能力。评估结果证实,NDD 是一种预测未知 DDI 的有效方法。NDD 的数据和实现可在 https://github.com/nrohani/NDD 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0eb/6754439/a6e480fc1187/41598_2019_50121_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验