Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China.
CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China.
ACS Nano. 2020 Feb 25;14(2):2053-2062. doi: 10.1021/acsnano.9b08660. Epub 2020 Feb 5.
Stem cell therapies are increasingly recognized as the future direction of regenerative medicine, but the biological fate of the administrated stem cells remains a major concern for clinical translation, which calls for an approach to efficiently monitoring the stem cell behaviors . Magnetic particle imaging (MPI) is an emerging technology for cell tracking; however, its utility has been largely restricted due to the lack of optimal magnetic nanoparticle tracers. Herein, by controlled engineering of the size and shape of magnetic nanoparticles tailored to MPI physics theory, a specialized MPI tracer, based on cubic iron oxide nanoparticles with an edge length of 22 nm (CIONs-22), is developed. Due to the inherent lower proportion of disordered surface spins, CIONs-22 exhibit significantly larger saturation magnetization than that of spherical ones, while they possess similar saturation magnetization but smaller coercivity compared to larger-sized CIONs. These magnetic properties of CIONs-22 warrant high sensitivity and resolution of MPI. With their efficient cellular uptake, CIONs-22 exhibit superior MPI performance for stem cell labeling and tracking compared to the commercialized tracer Vivotrax. By virtue of these advantages, CIONs-22 enable real-time and prolonged monitoring of the spatiotemporal trajectory of stem cells transplanted to hindlimb ischemia mice, which demonstrates the great potential of CIONs-22 as MPI tracers to advance stem cell therapies.
干细胞疗法越来越被认为是再生医学的未来方向,但管理的干细胞的生物学命运仍然是临床转化的主要关注点,这需要一种方法来有效地监测干细胞的行为。磁粒子成像(MPI)是一种用于细胞跟踪的新兴技术;然而,由于缺乏最佳的磁性纳米粒子示踪剂,其应用受到了很大的限制。在此,通过对磁性纳米粒子的尺寸和形状进行控制工程设计,使其符合 MPI 物理理论,开发了一种特殊的 MPI 示踪剂,基于边长为 22nm 的立方氧化亚铁纳米粒子(CIONs-22)。由于无序表面自旋的比例较低,CIONs-22 的饱和磁化强度明显大于球形的饱和磁化强度,而与较大尺寸的 CIONs 相比,它们具有相似的饱和磁化强度但矫顽力较小。CIONs-22 的这些磁性特性保证了 MPI 的高灵敏度和分辨率。由于其高效的细胞摄取,CIONs-22 在干细胞标记和跟踪方面表现出优于商业化示踪剂 Vivotrax 的 MPI 性能。由于这些优势,CIONs-22 能够实时和长时间监测移植到下肢缺血小鼠的干细胞的时空轨迹,这表明 CIONs-22 作为 MPI 示踪剂在推进干细胞疗法方面具有巨大的潜力。
Biomaterials. 2013-3-25
Methods Mol Biol. 2020
J Control Release. 2023-4
Methods Mol Biol. 2020
Mol Imaging Biol. 2025-8-6
Mater Today Phys. 2023-3
J Magn Magn Mater. 2025-5-15
ACS Appl Mater Interfaces. 2025-4-9
Nanomaterials (Basel). 2024-12-7