Suppr超能文献

基于神经网络估计的非参数分量的促销时间治愈率模型。

Promotion time cure rate model with a neural network estimated nonparametric component.

机构信息

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.

Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Stat Med. 2021 Jul 10;40(15):3516-3532. doi: 10.1002/sim.8980. Epub 2021 Apr 29.

Abstract

Promotion time cure rate models (PCM) are often used to model the survival data with a cure fraction. Medical images or biomarkers derived from medical images can be the key predictors in survival models. However, incorporating images in the PCM is challenging using traditional nonparametric methods such as splines. We propose to use neural network to model the nonparametric or unstructured predictors' effect in the PCM context. Expectation-maximization algorithm with neural network for the M-step is used for parameter estimation. Asymptotic properties of the proposed estimates are derived. Simulation studies show good performance in terms of both prediction and estimation. We finally apply our methods to analyze the brain images from open access series of imaging studies data.

摘要

促进时间治愈率模型(PCM)通常用于对治愈率进行建模的生存数据。从医学图像或医学图像衍生的生物标志物可以成为生存模型中的关键预测因子。然而,使用传统的非参数方法(如样条)将图像纳入 PCM 是具有挑战性的。我们建议使用神经网络来模拟 PCM 中无参数或非结构化预测因子的效果。使用神经网络的期望最大化算法用于 M 步的参数估计。推导了所提出估计量的渐近性质。模拟研究表明,在预测和估计方面均具有良好的性能。最后,我们将我们的方法应用于分析来自开放获取成像研究数据集的大脑图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验