Suppr超能文献

基于反应的结果预测和置信度调节反馈处理和学习。

Response-based outcome predictions and confidence regulate feedback processing and learning.

机构信息

Humboldt-Universität zu Berlin, Berlin, Germany.

Brown University, Providence, United States.

出版信息

Elife. 2021 Apr 30;10:e62825. doi: 10.7554/eLife.62825.

Abstract

Influential theories emphasize the importance of predictions in learning: we learn from feedback to the extent that it is surprising, and thus conveys new information. Here, we explore the hypothesis that surprise depends not only on comparing current events to past experience, but also on online evaluation of performance via internal monitoring. Specifically, we propose that people leverage insights from response-based performance monitoring - outcome predictions and confidence - to control learning from feedback. In line with predictions from a Bayesian inference model, we find that people who are better at calibrating their confidence to the precision of their outcome predictions learn more quickly. Further in line with our proposal, EEG signatures of feedback processing are sensitive to the accuracy of, and confidence in, post-response outcome predictions. Taken together, our results suggest that online predictions and confidence serve to calibrate neural error signals to improve the efficiency of learning.

摘要

有影响力的理论强调了预测在学习中的重要性

我们从反馈中学习,程度是它是令人惊讶的,因此传达了新的信息。在这里,我们探讨了这样一种假设,即惊讶不仅取决于将当前事件与过去的经验进行比较,还取决于通过内部监控对性能进行在线评估。具体来说,我们提出人们利用基于反应的性能监测的见解——结果预测和信心——来控制从反馈中学习。符合贝叶斯推理模型的预测,我们发现,那些更善于根据结果预测的精度来校准信心的人学习速度更快。进一步符合我们的建议,反馈处理的 EEG 特征对反应后结果预测的准确性和信心敏感。总的来说,我们的结果表明,在线预测和信心有助于校准神经误差信号,以提高学习效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e4/8121545/4fc15005fd8e/elife-62825-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验