Centre for Medical Image Computing, Department of Computer Science, University College London, UK.
Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK.
Med Image Anal. 2021 Jul;71:102045. doi: 10.1016/j.media.2021.102045. Epub 2021 Apr 20.
We introduce and demonstrate an unsupervised machine learning technique for spectroscopic analysis of quantitative MRI experiments. Our algorithm supports estimation of one-dimensional spectra from single-contrast data, and multidimensional correlation spectra from simultaneous multi-contrast data. These spectrum-based approaches allow model-free investigation of tissue properties, but require regularised inversion of a Laplace transform or Fredholm integral, which is an ill-posed calculation. Here we present a method that addresses this limitation in a data-driven way. The algorithm simultaneously estimates a canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling information across whole images to regularise the ill-posed problem. We show in simulations that our algorithm substantially outperforms current voxelwise spectral approaches. We demonstrate the method on multi-contrast diffusion-relaxometry placental MRI scans, revealing anatomically-relevant sub-structures, and identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate spectra, opening up the possibility of quantitative MRI spectroscopy in a wide range of new applications. Our InSpect code is available at github.com/paddyslator/inspect.
我们介绍并演示了一种用于定量 MRI 实验光谱分析的无监督机器学习技术。我们的算法支持从单对比度数据估计一维光谱,以及从同时多对比度数据估计多维相关光谱。这些基于光谱的方法允许对组织特性进行无模型研究,但需要正则化拉普拉斯变换或弗雷德霍姆积分的反演,这是一个不适定的计算。在这里,我们提出了一种以数据驱动的方式解决这一限制的方法。该算法同时估计光谱分量的规范基和体素加权的映射,从而在整个图像中汇集信息以正则化不适定问题。我们在模拟中表明,我们的算法大大优于当前的体素光谱方法。我们在多对比度扩散弛豫胎盘 MRI 扫描上展示了该方法,揭示了与解剖相关的亚结构,并识别了功能失调的胎盘。我们的算法大大减少了可靠估计光谱所需的数据,为广泛的新应用中进行定量 MRI 光谱学开辟了可能性。我们的 InSpect 代码可在 github.com/paddyslator/inspect 上获得。