Suppr超能文献

第二语言听力理解测试认知诊断模型的最优选择

An Optimal Choice of Cognitive Diagnostic Model for Second Language Listening Comprehension Test.

作者信息

Dong Yanyun, Ma Xiaomei, Wang Chuang, Gao Xuliang

机构信息

School of Foreign Studies, Xi'an Jiaotong University, Xi'an, China.

Faculty of Education, University of Macau, Taipa, China.

出版信息

Front Psychol. 2021 Apr 16;12:608320. doi: 10.3389/fpsyg.2021.608320. eCollection 2021.

Abstract

Cognitive diagnostic models (CDMs) show great promise in language assessment for providing rich diagnostic information. The lack of a full understanding of second language (L2) listening subskills made model selection difficult. In search of optimal CDM(s) that could provide a better understanding of L2 listening subskills and facilitate accurate classification, this study carried a two-layer model selection. At the test level, A-CDM, LLM, and R-RUM had an acceptable and comparable model fit, suggesting mixed inter-attribute relationships of L2 listening subskills. At the item level, Mixed-CDMs were selected and confirmed the existence of mixed relationships. Mixed-CDMs had better model and person fit than G-DNIA. In addition to statistical approaches, the content analysis provided theoretical evidence to confirm and amend the item-level CDMs. It was found that semantic completeness pertaining to the attributes and item features may influence the attribute relationships. Inexplicable attribute conflicts could be a signal of suboptimal model choice. Sample size and the number of multi-attribute items should be taken into account in L2 listening cognitive diagnostic modeling studies. This study provides useful insights into the model selection and the underlying cognitive process for L2 listening tests.

摘要

认知诊断模型(CDMs)在语言评估中展现出巨大潜力,能够提供丰富的诊断信息。由于对第二语言(L2)听力子技能缺乏全面理解,使得模型选择变得困难。为了寻找能够更好地理解L2听力子技能并促进准确分类的最优CDM,本研究进行了两层模型选择。在测试层面,A-CDM、LLM和R-RUM具有可接受且可比的模型拟合度,这表明L2听力子技能存在混合的属性间关系。在项目层面,选择了混合CDM并证实了混合关系的存在。混合CDM的模型和个体拟合度优于G-DNIA。除了统计方法外,内容分析提供了理论证据来确认和修正项目层面的CDM。研究发现,与属性和项目特征相关的语义完整性可能会影响属性关系。无法解释的属性冲突可能是模型选择欠佳的信号。在L2听力认知诊断建模研究中应考虑样本量和多属性项目的数量。本研究为L2听力测试的模型选择和潜在认知过程提供了有益的见解。

相似文献

2
Model Similarity, Model Selection, and Attribute Classification.模型相似性、模型选择与属性分类。
Appl Psychol Meas. 2016 May;40(3):200-217. doi: 10.1177/0146621615621717. Epub 2016 Jan 18.
5
Determining the Number of Attributes in Cognitive Diagnosis Modeling.确定认知诊断建模中的属性数量。
Front Psychol. 2021 Feb 15;12:614470. doi: 10.3389/fpsyg.2021.614470. eCollection 2021.
6
On the Sequential Hierarchical Cognitive Diagnostic Model.论序列分层认知诊断模型
Front Psychol. 2020 Oct 7;11:579018. doi: 10.3389/fpsyg.2020.579018. eCollection 2020.

引用本文的文献

1
A cognitive diagnosis model for disengaged behaviors.一种针对脱离行为的认知诊断模型。
Behav Res Methods. 2025 Jul 1;57(8):213. doi: 10.3758/s13428-025-02734-y.
4
Improving reliability estimation in cognitive diagnosis modeling.提高认知诊断建模中的可靠性估计
Behav Res Methods. 2023 Oct;55(7):3446-3460. doi: 10.3758/s13428-022-01967-5. Epub 2022 Sep 20.

本文引用的文献

1
Model Similarity, Model Selection, and Attribute Classification.模型相似性、模型选择与属性分类。
Appl Psychol Meas. 2016 May;40(3):200-217. doi: 10.1177/0146621615621717. Epub 2016 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验