Schnakenberg Annika, Aromokeye David A, Kulkarni Ajinkya, Maier Lisa, Wunder Lea C, Richter-Heitmann Tim, Pape Thomas, Ristova Petra Pop, Bühring Solveig I, Dohrmann Ingrid, Bohrmann Gerhard, Kasten Sabine, Friedrich Michael W
Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.
International Max Planck Research School of Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
Front Microbiol. 2021 Apr 14;12:617280. doi: 10.3389/fmicb.2021.617280. eCollection 2021.
Anaerobic methane oxidizing archaea (ANME) mediate anaerobic oxidation of methane (AOM) in marine sediments and are therefore important for controlling atmospheric methane concentrations in the water column and ultimately the atmosphere. Numerous previous studies have revealed that AOM is coupled to the reduction of different electron acceptors such as sulfate, nitrate/nitrite or Fe(III)/Mn(IV). However, the influence of electron acceptor availability on the ANME community composition in sediments remains largely unknown. Here, we investigated the electron acceptor availability and compared the microbial communities of three methane-rich locations offshore the sub-Antarctic island South Georgia, by Illumina sequencing and qPCR of genes. The methanic zone (MZ) sediments of Royal Trough and Church Trough comprised high sulfide concentrations of up to 4 and 19 mM, respectively. In contrast, those of the Cumberland Bay fjord accounted for relatively high concentrations of dissolved iron (up to 186 μM). Whereas the ANME community in the sulfidic sites Church Trough and Royal Trough mainly comprised members of the ANME-1 clade, the order-level clade "ANME-1-related" (Lever and Teske, 2015) was most abundant in the iron-rich site in Cumberland Bay fjord, indicating that the availability of electron acceptors has a strong selective effect on the ANME community. This study shows that potential electron acceptors for methane oxidation may serve as environmental filters to select for the ANME community composition and adds to a better understanding of the global importance of AOM.
厌氧甲烷氧化古菌(ANME)介导海洋沉积物中甲烷的厌氧氧化(AOM),因此对于控制水柱乃至大气中的大气甲烷浓度至关重要。此前众多研究表明,AOM与不同电子受体(如硫酸盐、硝酸盐/亚硝酸盐或Fe(III)/Mn(IV))的还原作用相关联。然而,电子受体的可利用性对沉积物中ANME群落组成的影响在很大程度上仍不清楚。在此,我们通过对基因进行Illumina测序和定量PCR,研究了亚南极南乔治亚岛近海三个富含甲烷地点的电子受体可利用性,并比较了其微生物群落。皇家海槽和教堂海槽的甲烷带(MZ)沉积物中分别含有高达4 mM和19 mM的高硫化物浓度。相比之下,坎伯兰湾峡湾的沉积物中溶解铁浓度相对较高(高达186 μM)。在硫化物含量高的教堂海槽和皇家海槽位点,ANME群落主要由ANME-1进化枝的成员组成,而在坎伯兰湾峡湾富含铁的位点,“与ANME-1相关”的目级进化枝(Lever和Teske,2015年)最为丰富,这表明电子受体的可利用性对ANME群落具有强烈的选择作用。本研究表明,甲烷氧化的潜在电子受体可能作为环境筛选因素来选择ANME群落组成,并有助于更好地理解AOM在全球范围内的重要性。