Suppr超能文献

同时使用人工智能工具提高乳腺钼靶检查的乳腺癌检测准确性。

Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool.

作者信息

Pacilè Serena, Lopez January, Chone Pauline, Bertinotti Thomas, Grouin Jean Marie, Fillard Pierre

机构信息

Therapixel SA, 39 Rue Claude Daunesse, 06560 Valbonne, France (S.P., P.C., T.B., P.F.); Radiology & Imaging Services, Hoag Memorial Hospital Presbyterian, Newport Beach, Calif (J.L.); and Department of Statistics, University of Rouen, Rouen, France (J.M.G.).

出版信息

Radiol Artif Intell. 2020 Nov 4;2(6):e190208. doi: 10.1148/ryai.2020190208. eCollection 2020 Nov.

Abstract

PURPOSE

To evaluate the benefits of an artificial intelligence (AI)-based tool for two-dimensional mammography in the breast cancer detection process.

MATERIALS AND METHODS

In this multireader, multicase retrospective study, 14 radiologists assessed a dataset of 240 digital mammography images, acquired between 2013 and 2016, using a counterbalance design in which half of the dataset was read without AI and the other half with the help of AI during a first session and vice versa during a second session, which was separated from the first by a washout period. Area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and reading time were assessed as endpoints.

RESULTS

The average AUC across readers was 0.769 (95% CI: 0.724, 0.814) without AI and 0.797 (95% CI: 0.754, 0.840) with AI. The average difference in AUC was 0.028 (95% CI: 0.002, 0.055, = .035). Average sensitivity was increased by 0.033 when using AI support ( = .021). Reading time changed dependently to the AI-tool score. For low likelihood of malignancy (< 2.5%), the time was about the same in the first reading session and slightly decreased in the second reading session. For higher likelihood of malignancy, the reading time was on average increased with the use of AI.

CONCLUSION

This clinical investigation demonstrated that the concurrent use of this AI tool improved the diagnostic performance of radiologists in the detection of breast cancer without prolonging their workflow.© RSNA, 2020.

摘要

目的

评估基于人工智能(AI)的工具在乳腺癌检测过程中对二维乳腺钼靶检查的益处。

材料与方法

在这项多阅片者、多病例回顾性研究中,14名放射科医生使用平衡设计评估了2013年至2016年间获取的240幅数字乳腺钼靶图像数据集。在第一次阅片过程中,一半数据集在无AI辅助的情况下阅读,另一半在AI辅助下阅读;在第二次阅片过程中,阅读顺序相反,两次阅片之间有洗脱期。将受试者操作特征曲线下面积(AUC)、灵敏度、特异度和阅片时间作为评估指标。

结果

无AI辅助时,阅片者的平均AUC为0.769(95%CI:0.724,0.814);有AI辅助时,平均AUC为0.797(95%CI:0.754,0.840)。AUC的平均差异为0.028(95%CI:0.002,0.055,P = 0.035)。使用AI辅助时,平均灵敏度提高了0.033(P = 0.021)。阅片时间随AI工具评分而变化。对于恶性可能性较低(<2.5%)的情况,第一次阅片时的时间大致相同,第二次阅片时略有减少。对于恶性可能性较高的情况,使用AI时阅片时间平均增加。

结论

这项临床研究表明,同时使用该AI工具可提高放射科医生在乳腺癌检测中的诊断性能,且不会延长其工作流程。©RSNA,2020年。

相似文献

引用本文的文献

1
Integrating artificial intelligence into veterinary education: student perspectives.将人工智能融入兽医教育:学生视角
Front Vet Sci. 2025 Aug 4;12:1641685. doi: 10.3389/fvets.2025.1641685. eCollection 2025.

本文引用的文献

3
International evaluation of an AI system for breast cancer screening.国际乳腺癌筛查人工智能系统评估。
Nature. 2020 Jan;577(7788):89-94. doi: 10.1038/s41586-019-1799-6. Epub 2020 Jan 1.
6
Intraclass correlation - A discussion and demonstration of basic features.组内相关系数 - 基本特征的讨论与演示。
PLoS One. 2019 Jul 22;14(7):e0219854. doi: 10.1371/journal.pone.0219854. eCollection 2019.
8
Multireader sample size program for diagnostic studies: demonstration and methodology.诊断研究的多读者样本量规划:示例与方法
J Med Imaging (Bellingham). 2018 Oct;5(4):045503. doi: 10.1117/1.JMI.5.4.045503. Epub 2018 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验