Suppr超能文献

纳米级肽组装体的动态连续体促进内吞作用和内体逃逸。

Dynamic Continuum of Nanoscale Peptide Assemblies Facilitates Endocytosis and Endosomal Escape.

作者信息

He Hongjian, Guo Jiaqi, Xu Jiashu, Wang Jiaqing, Liu Shuang, Xu Bing

机构信息

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

出版信息

Nano Lett. 2021 May 12;21(9):4078-4085. doi: 10.1021/acs.nanolett.1c01029. Epub 2021 May 3.

Abstract

Alkaline phosphatase (ALP) enables intracellular targeting by peptide assemblies, but how the ALP substrates enter cells remains elusive. Here we show that nanoscale phosphopeptide assemblies cluster ALP to enable caveolae-mediated endocytosis (CME) and endosomal escape. Specifically, fluorescent phosphopeptides undergo enzyme-catalyzed self-assembly to form nanofibers. Live cell imaging unveils that phosphopeptides nanoparticles, coincubated with HEK293 cells overexpressing red fluorescent protein-tagged tissue-nonspecific ALP (TNAP-RFP), cluster TNAP-RFP in lipid rafts to enable CME. Further dephosphorylation of the phosphopeptides produces peptidic nanofibers for endosomal escape. Inhibiting TNAP, cleaving the membrane anchored TNAP, or disrupting lipid rafts abolishes the endocytosis. Decreasing the transformation to nanofibers prevents the endosomal escape. As the first study establishing a dynamic continuum of nanoscale assemblies for cellular uptake, this work illustrates an effective design for enzyme-responsive supramolecular therapeutics and provides mechanism insights for understanding the dynamics of cellular uptake of proteins or exogenous peptide aggregates.

摘要

碱性磷酸酶(ALP)可通过肽组装实现细胞内靶向,但ALP底物如何进入细胞仍不清楚。在此,我们表明纳米级磷酸肽组装可使ALP聚集,从而实现小窝介导的内吞作用(CME)和内体逃逸。具体而言,荧光磷酸肽会发生酶催化的自组装形成纳米纤维。活细胞成像显示,与过表达红色荧光蛋白标记的组织非特异性ALP(TNAP-RFP)的HEK293细胞共孵育的磷酸肽纳米颗粒,会在脂筏中聚集TNAP-RFP以实现CME。磷酸肽的进一步去磷酸化产生用于内体逃逸的肽纳米纤维。抑制TNAP、切割膜锚定的TNAP或破坏脂筏会消除内吞作用。减少向纳米纤维的转变会阻止内体逃逸。作为第一项建立用于细胞摄取的纳米级组装动态连续体的研究,这项工作阐明了酶响应性超分子疗法的有效设计,并为理解蛋白质或外源性肽聚集体的细胞摄取动力学提供了机制见解。

相似文献

6
Chemically Designed Nanoscale Materials for Controlling Cellular Processes.化学设计的纳米材料用于控制细胞过程。
Acc Chem Res. 2021 Jul 20;54(14):2916-2927. doi: 10.1021/acs.accounts.1c00215. Epub 2021 Jul 7.
8
Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells.核内纳米带用于选择性杀伤骨肉瘤细胞。
Angew Chem Int Ed Engl. 2022 Nov 2;61(44):e202210568. doi: 10.1002/anie.202210568. Epub 2022 Oct 5.

引用本文的文献

5
Recent progress in nanomedicine-mediated cytosolic delivery.纳米医学介导的胞质递送的最新进展。
RSC Adv. 2023 Mar 28;13(15):9788-9799. doi: 10.1039/d2ra07111h. eCollection 2023 Mar 27.
7
Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells.核内纳米带用于选择性杀伤骨肉瘤细胞。
Angew Chem Int Ed Engl. 2022 Nov 2;61(44):e202210568. doi: 10.1002/anie.202210568. Epub 2022 Oct 5.
9
Synthesis and bioactivity of pyrrole-conjugated phosphopeptides.吡咯共轭磷酸肽的合成与生物活性
Beilstein J Org Chem. 2022 Jan 31;18:159-166. doi: 10.3762/bjoc.18.17. eCollection 2022.

本文引用的文献

2
Crescent-Shaped Supramolecular Tetrapeptide Nanostructures.新月形超分子四肽纳米结构。
J Am Chem Soc. 2020 Nov 25;142(47):20058-20065. doi: 10.1021/jacs.0c09399. Epub 2020 Nov 13.
3
Coronavirus biology and replication: implications for SARS-CoV-2.冠状病毒的生物学与复制:对 SARS-CoV-2 的启示。
Nat Rev Microbiol. 2021 Mar;19(3):155-170. doi: 10.1038/s41579-020-00468-6. Epub 2020 Oct 28.
5
Enzymatic Noncovalent Synthesis.酶非共价合成。
Chem Rev. 2020 Sep 23;120(18):9994-10078. doi: 10.1021/acs.chemrev.0c00306. Epub 2020 Aug 19.
6
Artificial Intracellular Filaments.人工细胞内细丝
Cell Rep Phys Sci. 2020 Jul 22;1(7). doi: 10.1016/j.xcrp.2020.100085. Epub 2020 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验