Suppr超能文献

用于光声目标定位的同时去噪和定位网络。

Simultaneous Denoising and Localization Network for Photoacoustic Target Localization.

出版信息

IEEE Trans Med Imaging. 2021 Sep;40(9):2367-2379. doi: 10.1109/TMI.2021.3077187. Epub 2021 Aug 31.

Abstract

A significant research problem of recent interest is the localization of targets like vessels, surgical needles, and tumors in photoacoustic (PA) images.To achieve accurate localization, a high photoacoustic signal-to-noise ratio (SNR) is required. However, this is not guaranteed for deep targets, as optical scattering causes an exponential decay in optical fluence with respect to tissue depth. To address this, we develop a novel deep learning method designed to explicitly exhibit robustness to noise present in photoacoustic radio-frequency (RF) data. More precisely, we describe and evaluate a deep neural network architecture consisting of a shared encoder and two parallel decoders. One decoder extracts the target coordinates from the input RF data while the other boosts the SNR and estimates clean RF data. The joint optimization of the shared encoder and dual decoders lends significant noise robustness to the features extracted by the encoder, which in turn enables the network to contain detailed information about deep targets that may be obscured by noise. Additional custom layers and newly proposed regularizers in the training loss function (designed based on observed RF data signal and noise behavior) serve to increase the SNR in the cleaned RF output and improve model performance. To account for depth-dependent strong optical scattering, our network was trained with simulated photoacoustic datasets of targets embedded at different depths inside tissue media of different scattering levels. The network trained on this novel dataset accurately locates targets in experimental PA data that is clinically relevant with respect to the localization of vessels, needles, or brachytherapy seeds. We verify the merits of the proposed architecture by outperforming the state of the art on both simulated and experimental datasets.

摘要

最近,一个备受关注的重要研究问题是在光声(PA)图像中定位目标,如血管、手术针和肿瘤。为了实现精确的定位,需要高的光声信号-噪声比(SNR)。然而,对于深层目标,由于光散射导致光通量随组织深度呈指数衰减,这一点无法保证。为了解决这个问题,我们开发了一种新的深度学习方法,旨在明确表现出对光声射频(RF)数据中噪声的鲁棒性。更准确地说,我们描述并评估了一种由共享编码器和两个并行解码器组成的深度神经网络架构。一个解码器从输入的 RF 数据中提取目标坐标,而另一个则提高 SNR 并估计干净的 RF 数据。共享编码器和双解码器的联合优化赋予了编码器提取的特征显著的噪声鲁棒性,这反过来又使网络能够包含可能被噪声掩盖的深层目标的详细信息。在训练损失函数中添加的新的自定义层和新提出的正则化器(基于观察到的 RF 数据信号和噪声行为设计)用于增加清洁 RF 输出中的 SNR 并提高模型性能。为了考虑到与深度相关的强光散射,我们的网络是用不同散射水平的组织介质中不同深度嵌入的目标的模拟光声数据集进行训练的。该网络在与血管、针或近距离放射治疗种子的定位相关的临床相关实验 PA 数据中准确地定位了目标。我们通过在模拟和实验数据集上都优于最先进的方法来验证所提出架构的优点。

相似文献

1
Simultaneous Denoising and Localization Network for Photoacoustic Target Localization.用于光声目标定位的同时去噪和定位网络。
IEEE Trans Med Imaging. 2021 Sep;40(9):2367-2379. doi: 10.1109/TMI.2021.3077187. Epub 2021 Aug 31.
2
A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium.深度学习在深层组织中光声波前定位的方法。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2649-2659. doi: 10.1109/TUFFC.2020.2964698. Epub 2020 Nov 24.
8
DeepSeg: Deep Segmental Denoising Neural Network for Seismic Data.深度分割:用于地震数据的深度分段去噪神经网络
IEEE Trans Neural Netw Learn Syst. 2023 Jul;34(7):3397-3404. doi: 10.1109/TNNLS.2022.3205421. Epub 2023 Jul 6.

本文引用的文献

4
Deep learning improves contrast in low-fluence photoacoustic imaging.深度学习可改善低通量光声成像中的对比度。
Biomed Opt Express. 2020 May 29;11(6):3360-3373. doi: 10.1364/BOE.395683. eCollection 2020 Jun 1.
6
A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium.深度学习在深层组织中光声波前定位的方法。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2649-2659. doi: 10.1109/TUFFC.2020.2964698. Epub 2020 Nov 24.
8
Super Wide-Field Photoacoustic Microscopy of Animals and Humans In Vivo.动物和人体的超宽场光声显微镜活体成像。
IEEE Trans Med Imaging. 2020 Apr;39(4):975-984. doi: 10.1109/TMI.2019.2938518. Epub 2019 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验