Suppr超能文献

评估衰老速度以监测衰老本身。

Assessing the rate of aging to monitor aging itself.

机构信息

Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China; Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.

Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China; CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Ageing Res Rev. 2021 Aug;69:101350. doi: 10.1016/j.arr.2021.101350. Epub 2021 Apr 30.

Abstract

Healthy aging is the prime goal of aging research and interventions. Healthy aging or not can be quantified by biological aging rates estimated by aging clocks. Generation and accumulation of large scale high-dimensional biological data together with maturation of artificial intelligence among other machine learning techniques, have enabled and spurred the rapid development of various aging rate estimators (aging clocks). Here we review the data sources and compare the algorithms of recent human aging clocks, and the applications of these clocks in both researches and daily life. We envision that not only more and multiscale data on cross-sectional data will add momentum to the aging clock development, new longitudinal and interventional data will further raise the aging clock development to the next level to be trained by true biological age such as morbidity and mortality age.

摘要

健康老龄化是衰老研究和干预的首要目标。健康老龄化或非健康老龄化可以通过衰老钟估计的生物衰老率来量化。大量高维生物数据的产生和积累,以及人工智能等机器学习技术的成熟,使得各种衰老率估计器(衰老钟)得以迅速发展和推动。在这里,我们回顾了最近人类衰老钟的数据源和算法,并比较了这些时钟在研究和日常生活中的应用。我们设想,不仅更多和多尺度的横断面数据将为衰老钟的发展提供动力,新的纵向和干预数据将进一步将衰老钟的发展提升到一个新的水平,通过真正的生物年龄(如发病率和死亡率年龄)进行训练。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验