Breternitz Joachim, Schorr Susan
Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
Acta Crystallogr A Found Adv. 2021 May 1;77(Pt 3):208-216. doi: 10.1107/S2053273320015971. Epub 2021 Mar 23.
Binary III-V nitrides such as AlN, GaN and InN in the wurtzite-type structure have long been considered as potent semiconducting materials because of their optoelectronic properties, amongst others. With rising concerns over the utilization of scarce elements, a replacement of the trivalent cations by others in ternary and multinary nitrides has led to the development of different variants of nitrides and oxide nitrides crystallizing in lower-symmetry variants of wurtzite. This work presents the symmetry relationships between these structural types specific to nitrides and oxide nitrides and updates some prior work on this matter. The non-existence of compounds crystallizing in Pmc2, formally the highest subgroup of the wurtzite type fulfilling Pauling's rules for 1:1:2 stoichiometries, has been puzzling scientists for a while; a rationalization is given, from a crystallographic basis, of why this space group is unlikely to be adopted.
诸如纤锌矿型结构的AlN、GaN和InN等二元III-V族氮化物长期以来因其光电特性等因素而被视为有潜力的半导体材料。随着对稀缺元素利用的关注度不断提高,在三元和多元氮化物中用其他元素替代三价阳离子导致了在纤锌矿低对称变体中结晶的不同氮化物和氮氧化物变体的发展。这项工作展示了这些特定于氮化物和氮氧化物的结构类型之间的对称关系,并更新了此前关于此问题的一些工作。以1:1:2化学计量比结晶的Pmc2(从形式上看是纤锌矿型满足鲍林规则的最高子群)不存在化合物,这一情况困扰了科学家一段时间;本文从晶体学角度给出了为何这个空间群不太可能被采用的合理解释。