Suppr超能文献

跨域息肉分割的互原型自适应。

Mutual-Prototype Adaptation for Cross-Domain Polyp Segmentation.

出版信息

IEEE J Biomed Health Inform. 2021 Oct;25(10):3886-3897. doi: 10.1109/JBHI.2021.3077271. Epub 2021 Oct 5.

Abstract

Accurate segmentation of the polyps from colonoscopy images provides useful information for the diagnosis and treatment of colorectal cancer. Despite deep learning methods advance automatic polyp segmentation, their performance often degrades when applied to new data acquired from different scanners or sequences (target domain). As manual annotation is tedious and labor-intensive for new target domain, leveraging knowledge learned from the labeled source domain to promote the performance in the unlabeled target domain is highly demanded. In this work, we propose a mutual-prototype adaptation network to eliminate domain shifts in multi-centers and multi-devices colonoscopy images. We first devise a mutual-prototype alignment (MPA) module with the prototype relation function to refine features through self-domain and cross-domain information in a coarse-to-fine process. Then two auxiliary modules: progressive self-training (PST) and disentangled reconstruction (DR) are proposed to improve the segmentation performance. The PST module selects reliable pseudo labels through a novel uncertainty guided self-training loss to obtain accurate prototypes in the target domain. The DR module reconstructs original images jointly utilizing prediction results and private prototypes to maintain semantic consistency and provide complement supervision information. We extensively evaluate the proposed model in polyp segmentation performance on three conventional colonoscopy datasets: CVC-DB, Kvasir-SEG, and ETIS-Larib. The comprehensive experimental results demonstrate that the proposed model outperforms state-of-the-art methods.

摘要

从结肠镜图像中准确分割息肉可为结直肠癌的诊断和治疗提供有用信息。尽管深度学习方法在自动息肉分割方面取得了进展,但当应用于来自不同扫描仪或序列(目标域)的新数据时,其性能往往会下降。由于新目标域的手动标注既繁琐又耗时,因此利用从有标注源域中学到的知识来促进无标注目标域的性能是非常需要的。在这项工作中,我们提出了一种互原型自适应网络来消除多中心和多设备结肠镜图像中的域转移。我们首先设计了一个具有原型关系函数的互原型对齐(MPA)模块,通过自域和跨域信息在粗到细的过程中细化特征。然后提出了两个辅助模块:渐进式自我训练(PST)和解缠重建(DR),以提高分割性能。PST 模块通过新颖的不确定性引导的自我训练损失选择可靠的伪标签,以在目标域中获得准确的原型。DR 模块通过联合利用预测结果和私有原型来重建原始图像,以保持语义一致性并提供补充监督信息。我们在三个传统结肠镜数据集(CVC-DB、Kvasir-SEG 和 ETIS-Larib)上对所提出的模型进行了广泛的评估,以评估其在息肉分割性能方面的表现。全面的实验结果表明,所提出的模型优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验