Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France.
Commun Biol. 2021 May 5;4(1):529. doi: 10.1038/s42003-021-02051-y.
The SF3B complex, a multiprotein component of the U2 snRNP of the spliceosome, plays a crucial role in recognizing branch point sequence and facilitates spliceosome assembly and activation. Several chemicals that bind SF3B1 and PHF5A subunits of the SF3B complex inhibit splicing. We recently generated a splicing inhibitor-resistant SF3B1 mutant named SF3B1 GEX1A RESISTANT 4 (SGR4) using CRISPR-mediated directed evolution, whereas splicing inhibitor-resistant mutant of PHF5A (Overexpression-PHF5A GEX1A Resistance, OGR) was generated by expressing an engineered version PHF5A-Y36C. Global analysis of splicing in wild type and these two mutants revealed the role of SF3B1 and PHF5A in splicing regulation. This analysis uncovered a set of genes whose intron retention is regulated by both proteins. Further analysis of these retained introns revealed that they are shorter, have a higher GC content, and contain shorter and weaker polypyrimidine tracts. Furthermore, splicing inhibition increased seedlings sensitivity to salt stress, consistent with emerging roles of splicing regulation in stress responses. In summary, we uncovered the functions of two members of the plant branch point recognition complex. The novel strategies described here should be broadly applicable in elucidating functions of splicing regulators, especially in studying the functions of redundant paralogs in plants.
SF3B 复合物是剪接体 U2 snRNP 的多蛋白成分,在识别分支点序列以及促进剪接体组装和激活方面发挥着关键作用。几种能与 SF3B 复合物的 SF3B1 和 PHF5A 亚基结合的化学物质能抑制剪接。我们最近使用 CRISPR 介导的定向进化生成了一种剪接抑制剂抗性 SF3B1 突变体,命名为 SF3B1 GEX1A RESISTANT 4(SGR4),而 PHF5A 的剪接抑制剂抗性突变体(Overexpression-PHF5A GEX1A Resistance,OGR)是通过表达工程化版本的 PHF5A-Y36C 生成的。对野生型和这两种突变体的全局剪接分析揭示了 SF3B1 和 PHF5A 在剪接调控中的作用。该分析发现了一组受这两种蛋白调控的内含子保留基因。对这些保留内含子的进一步分析表明,它们更短,GC 含量更高,并且含有更短、更弱的聚嘧啶序列。此外,剪接抑制增加了幼苗对盐胁迫的敏感性,这与剪接调控在应激反应中的新兴作用一致。总之,我们揭示了植物分支点识别复合物两个成员的功能。此处描述的新策略应该广泛适用于阐明剪接调节剂的功能,特别是在研究植物中冗余同源物的功能方面。