Suppr超能文献

利用表面增强拉曼光谱和多尺度卷积神经网络快速识别病原体。

Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network.

机构信息

College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.

Key Laboratory of Ministry of Education of China for Research of Design and Electromagnetic Compatibility of High-Speed Electronic System, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Anal Bioanal Chem. 2021 Jun;413(14):3801-3811. doi: 10.1007/s00216-021-03332-5. Epub 2021 May 7.

Abstract

Salmonella is a prevalent pathogen causing serious morbidity and mortality worldwide. There are over 2600 serovars of Salmonella. Among them, Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Paratyphi were reported to be the most common foodborne pathogenic serovars in the EU and China. In order to provide a more efficient approach to detect and distinguish these serovars, a new analytical method was developed by combining surface-enhanced Raman spectroscopy (SERS) with multi-scale convolutional neural network (CNN). We prepared 34-nm gold nanoparticles (AuNPs) as the label-free Raman substrate, measured 1854 SERS spectra of these three Salmonella serovars, and then proposed a multi-scale CNN model with three parallel CNNs to achieve multi-dimensional extraction of SERS spectral features. We observed the impact of the number of iterations and training samples on the recognition accuracy by changing the ratio of the number of the training and testing sets. By comparing the calculated data with experimental one, it was shown that our model could reach recognition accuracy more than 97%. These results indicate that it was not only feasible to combine SERS spectroscopy with multi-scale CNN for Salmonella serotype identification, but also for other pathogen species and serovar identifications.

摘要

沙门氏菌是一种普遍存在的病原体,在全球范围内造成严重的发病率和死亡率。沙门氏菌有超过 2600 个血清型。其中,肠炎沙门氏菌、鼠伤寒沙门氏菌和副伤寒沙门氏菌被报道为欧盟和中国最常见的食源性病原体血清型。为了提供一种更有效的方法来检测和区分这些血清型,我们结合表面增强拉曼光谱(SERS)和多尺度卷积神经网络(CNN)开发了一种新的分析方法。我们制备了 34nm 的金纳米颗粒(AuNPs)作为无标记的拉曼基底,测量了这三种沙门氏菌血清型的 1854 个 SERS 光谱,然后提出了一个具有三个并行 CNN 的多尺度 CNN 模型,以实现 SERS 光谱特征的多维提取。我们通过改变训练集和测试集的数量比例,观察了迭代次数和训练样本数量对识别精度的影响。通过将计算数据与实验数据进行比较,表明我们的模型可以达到超过 97%的识别准确率。这些结果表明,将 SERS 光谱与多尺度 CNN 结合不仅可用于沙门氏菌血清型鉴定,还可用于其他病原体种类和血清型鉴定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验