Chen Kun, Yan Rui, Xiang Limin, Xu Ke
College of Chemistry, University of California, Berkeley, CA, USA.
Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Light Sci Appl. 2021 May 8;10(1):97. doi: 10.1038/s41377-021-00536-3.
The multiplexing capability of fluorescence microscopy is severely limited by the broad fluorescence spectral width. Spectral imaging offers potential solutions, yet typical approaches to disperse the local emission spectra notably impede the attainable throughput. Here we show that using a single, fixed fluorescence emission detection band, through frame-synchronized fast scanning of the excitation wavelength from a white lamp via an acousto-optic tunable filter, up to six subcellular targets, labeled by common fluorophores of substantial spectral overlap, can be simultaneously imaged in live cells with low (~1%) crosstalks and high temporal resolutions (down to ~10 ms). The demonstrated capability to quantify the abundances of different fluorophores in the same sample through unmixing the excitation spectra next enables us to devise novel, quantitative imaging schemes for both bi-state and Förster resonance energy transfer fluorescent biosensors in live cells. We thus achieve high sensitivities and spatiotemporal resolutions in quantifying the mitochondrial matrix pH and intracellular macromolecular crowding, and further demonstrate, for the first time, the multiplexing of absolute pH imaging with three additional target organelles/proteins to elucidate the complex, Parkin-mediated mitophagy pathway. Together, excitation spectral microscopy provides exceptional opportunities for highly multiplexed fluorescence imaging. The prospect of acquiring fast spectral images without the need for fluorescence dispersion or care for the spectral response of the detector offers tremendous potential.
荧光显微镜的多路复用能力受到宽荧光光谱宽度的严重限制。光谱成像提供了潜在的解决方案,但典型的分散局部发射光谱的方法显著阻碍了可实现的通量。在这里,我们表明,通过使用单个固定的荧光发射检测波段,通过声光可调谐滤波器对来自白灯的激发波长进行帧同步快速扫描,在活细胞中可以同时对多达六个亚细胞靶点进行成像,这些靶点由具有大量光谱重叠的常见荧光团标记,串扰低(约1%)且时间分辨率高(低至约10毫秒)。通过解混激发光谱来量化同一样本中不同荧光团丰度的能力,接下来使我们能够为活细胞中的双态和Förster共振能量转移荧光生物传感器设计新颖的定量成像方案。因此,我们在量化线粒体基质pH值和细胞内大分子拥挤程度方面实现了高灵敏度和时空分辨率,并首次进一步证明了绝对pH成像与另外三个目标细胞器/蛋白质的多路复用,以阐明复杂的、由Parkin介导的线粒体自噬途径。总之,激发光谱显微镜为高度多路复用的荧光成像提供了绝佳机会。无需荧光色散或考虑探测器的光谱响应即可获取快速光谱图像的前景具有巨大潜力。