Suppr超能文献

相似文献

1
Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices.
Mater Sci Eng C Mater Biol Appl. 2021 Jun;125:112108. doi: 10.1016/j.msec.2021.112108. Epub 2021 Apr 16.
2
Bio-inspired stable antimicrobial peptide coatings for dental applications.
Acta Biomater. 2013 Sep;9(9):8224-31. doi: 10.1016/j.actbio.2013.06.017. Epub 2013 Jun 19.
4
Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility.
Colloids Surf B Biointerfaces. 2015 Apr 1;128:552-560. doi: 10.1016/j.colsurfb.2015.03.008. Epub 2015 Mar 7.
5
Covalent grafting of titanium with a cathelicidin peptide produces an osteoblast compatible surface with antistaphylococcal activity.
Colloids Surf B Biointerfaces. 2020 Jan 1;185:110586. doi: 10.1016/j.colsurfb.2019.110586. Epub 2019 Oct 16.
6
Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces.
Acta Biomater. 2016 Oct 15;44:313-22. doi: 10.1016/j.actbio.2016.08.010. Epub 2016 Aug 8.
7
[Study on antibacterial properties and osteoblast activity of antimicrobial peptide coatings on titanium implants].
Zhonghua Kou Qiang Yi Xue Za Zhi. 2018 Jun 9;53(6):419-424. doi: 10.3760/cma.j.issn.1002-0098.2018.06.011.
8
Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.
ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5070-81. doi: 10.1021/acsami.5b03697. Epub 2016 Feb 22.
9
High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells.
Acta Biomater. 2016 Mar;33:64-77. doi: 10.1016/j.actbio.2016.01.035. Epub 2016 Jan 25.
10
Preparing and immobilizing antimicrobial osteogenic growth peptide on titanium substrate surface.
J Biomed Mater Res A. 2018 Dec;106(12):3021-3033. doi: 10.1002/jbm.a.36491. Epub 2018 Sep 7.

引用本文的文献

1
Design of AgNPs loaded γ-PGA chitosan conduits with superior antibacterial activity and nerve repair properties.
Front Bioeng Biotechnol. 2025 May 16;13:1561330. doi: 10.3389/fbioe.2025.1561330. eCollection 2025.
3
Recent Progress in Antibacterial Surfaces for Implant Catheters.
BME Front. 2025 Feb 13;6:0063. doi: 10.34133/bmef.0063. eCollection 2025.
4
An introduction to antibacterial materials in composite restorations.
JADA Found Sci. 2024;3. doi: 10.1016/j.jfscie.2024.100038. Epub 2024 Oct 28.
5
Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix.
J Tissue Eng. 2024 Dec 12;15:20417314241303818. doi: 10.1177/20417314241303818. eCollection 2024 Jan-Dec.
6
Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications.
Dent Mater. 2024 Dec;40(12):2122-2134. doi: 10.1016/j.dental.2024.10.004. Epub 2024 Oct 18.
7
Unlocking the potential of stimuli-responsive biomaterials for bone regeneration.
Front Pharmacol. 2024 Jul 31;15:1437457. doi: 10.3389/fphar.2024.1437457. eCollection 2024.
8
Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review.
Front Bioeng Biotechnol. 2024 Mar 18;12:1342340. doi: 10.3389/fbioe.2024.1342340. eCollection 2024.
9
Peptide-Based Biomaterials for Bone and Cartilage Regeneration.
Biomedicines. 2024 Jan 29;12(2):313. doi: 10.3390/biomedicines12020313.
10
Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants.
Pharmaceutics. 2023 Oct 4;15(10):2418. doi: 10.3390/pharmaceutics15102418.

本文引用的文献

1
Recombinant AMP/Polypeptide Self-Assembled Monolayers with Synergistic Antimicrobial Properties for Bacterial Strains of Medical Relevance.
ACS Biomater Sci Eng. 2019 Sep 9;5(9):4708-4716. doi: 10.1021/acsbiomaterials.9b00247. Epub 2019 Jul 25.
2
Smart Titanium Coating Composed of Antibiotic Conjugated Peptides as an Infection-Responsive Antibacterial Agent.
Macromol Biosci. 2021 Jan;21(1):e2000194. doi: 10.1002/mabi.202000194. Epub 2020 Oct 13.
4
Keratinocyte-Specific Peptide-Based Surfaces for Hemidesmosome Upregulation and Prevention of Bacterial Colonization.
ACS Biomater Sci Eng. 2020 Sep 14;6(9):4929-4939. doi: 10.1021/acsbiomaterials.0c00845. Epub 2020 Aug 10.
5
Matrix-Metalloproteinase-Responsive Gene Delivery Surface for Enhanced in Situ Endothelialization.
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40121-40132. doi: 10.1021/acsami.0c11971. Epub 2020 Aug 25.
6
Harnessing biomolecules for bioinspired dental biomaterials.
J Mater Chem B. 2020 Oct 14;8(38):8713-8747. doi: 10.1039/d0tb01456g. Epub 2020 Aug 4.
7
IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel.
ACS Appl Bio Mater. 2020 Mar 16;3(3):1666-1680. doi: 10.1021/acsabm.9b01227. Epub 2020 Feb 19.
8
Targeting the oral plaque microbiome with immobilized anti-biofilm peptides at tooth-restoration interfaces.
PLoS One. 2020 Jul 2;15(7):e0235283. doi: 10.1371/journal.pone.0235283. eCollection 2020.
9
Loss of myocyte enhancer factor 2 expression in osteoclasts leads to opposing skeletal phenotypes.
Bone. 2020 Sep;138:115466. doi: 10.1016/j.bone.2020.115466. Epub 2020 Jun 6.
10
Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go.
J Dent Res. 2020 Sep;99(10):1140-1149. doi: 10.1177/0022034520927690. Epub 2020 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验